
Lectures on Public Goods Mechanisms

The Vickrey, Clark, Groves Mechanism

Remember our discussion of the pivotal mechanism. The government chooses
the outcome that maximizes the sum of reported willingness to pay and collects
nothing from an individual i if his report doesn’t change the outcome. If it
does shift the outcome, then i pays an amount equal to the difference between
amounts of the two sides not counting his own report. This amount is exactly
the difference X−Y between the summed value X to the rest of the population
of the outcome when i’s answer is not counted and the summed value Y to the
rest of the population if i’s value is counted. This same principle can be applied
in cases where the government’s choice can be any positive number rather than
just a binary choice.

Costless Public Goods

We first consider the special case where public goods are costless, but people still
disagree about how much should be provided. Suppose that there are n people
who share consumption of a public good. Each person i has initial wealth wi and
a quasilinear utility function U(x, y) = x+ui(y) and where ui is a single-peaked
function that increases for y ≤ y+i and decreases for y ≥ y+i .

Step 1: All players are asked to report their utility functions to the authority.
Let mi(·) be the function reported by i. Where the vector of reported utility
functions is given by m = (m1, . . .mn), the central authority chooses ȳ(m) to
maximize the sum of the reported utility functions.

Step 2: The central authority calculates a tax to be assessed to each indi-
vidual. The tax Ti(m) assessed on person i is equal to the difference between
the maximum sum of utilities that the other players could achieve if Player i
played no part in the decision and the sum of the utilities that the other players
achieve, given the message that Player i sends. More specifically, the maximum
sum of utilities that the others could achieve while ignoring i’s signal is

Z∼i(m) = max
y

∑
j 6=i

mj(y)

 .

The sum of the utilites that the others achieve when Player i’s message is used
to determine ȳ(m) is

Y∼i(m) =
∑
j 6=i

mj(ȳ(m)).

Thus we let Ti(m) = Z∼i(m)− Y∼i(m).
Step 3: The quantity ȳ(m) is chosen. Each player i pays an amount

Ti(m) = Z∼i(m)− Y∼i(m) ≥ 0.
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This revenue is not reimbursed to the players.

Note the following:

• The amount Z∼i(m) defined in Step 3 does not depend on i’s reported
utility function.

• Since Z∼i(m) = maxy{
∑

j 6=imj(ȳj)}, it must be that Z∼i(m) ≥
∑

j 6=imj (ȳ(m)) =
Y∼i(m). It follows that the net tax paid by person i, which is Z∼i(m) −
Y∼i(m) must be positive. Interpreting this net tax, we see that it is the
effect of person i’s response on the total utiilty that the other players get
from y.

• If the vector of messages sent by all players is m, and the government
chooses y, then the after tax income of player i will be

wi − Z∼i(m) +
∑
j 6=i

mj(y).

and so the utility of player i will be

wi − Z∼i(m) +
∑
j 6=i

mj(y) + ui(y).

• Since the message sent by player i’s has no effect on either wi or Z, the only
effect of player i’s message on his own utility acts through its influence on
the amount of public good y that the government chooses. In particular
player i would like the government to choose y to make∑

j 6=i

mj(y) + ui(y)

as large as possible.

• Recall that the government chooses y to maximize∑
j 6=i

mj(y) +mi(y).

What is the best thing that player i can do for himself?. If he reports
mi = ui, then the government will choose y to maximize∑

j 6=i

mj(y) + ui(y),

which is exactly what i wants it to do. If i reports m 6= u, the government
will solve a different maximization problem which in general will result in
a lower value of ∑

j 6=i

mj(y) + ui(y).
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With these results we conclude that

1. reporting one’s true utility is a weakly dominant strategy.

2. When everybody uses their weakly dominant strategy, the outcome is the
Pareto optimal amount of y.

3. The net tax collected from each person is non-negative.

4. If a positive taxes are collected, the outcome is not efficient, since the
mechanism doesn’t allow for them to be rebated.

Party animals: an illustrative spcial case:

Three friends, Archie, Betty, and Veronica are planning a party. They disagree
about how many people to invite. Each person i has an initial endowment of
Wi dollars and a quasilinear utility function of the form

ui(xi, y) = xi + aiy −
1

2
y2 (1)

where xi is the number of dollars that i has to spend and y is the number of
people invited to the party. They all know that all three have utility functions
of this functional form, but only person i knows the parameter ai from his or her
own utility function. For this example, let us suppose that aA = 20, aB = 40,
and aV = 60.

Implementing the VCG mechanism we have:

Step 1: Each person is asked to report his or her parameter ai. They are not
necessarily required to tell the truth. Let mi be the value reported by person i.
The friends agree to choose a number of persons y to maximize the sum of the
reported utility functions, which is

(mA +mB +mV )y − 3

2
y2.

This happens when

y(m) =
mA +mB +mC

3
.

(We have shown that if each person plays his or her best strategy, then mi = ai
for all i. In this case, the number of persons invited is y(m) = aA+aB+aV

3 = 40.)

Step 2: Now we calculate the “tax” paid by each player.
First let’s find the Z’s. For Archie, we have

Z∼A(m) = max
y

{
(mB +mV )y − y2

}
.

This is maximized when y = (mB + mV )/2. A simple calculation then shows
that

Z∼A(m) =
(mB +mV )2

4
.
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(When Betty report their parameters truthfully, it must therefore be that mB +
mV = 100 and Z∼A(m) = 2500.

Similar calculations show that for Betty, Z∼B = (mA+mV )2

4 . Then when
Archie and Veronica report their parameters truthfully, mA +mV = 80, so that
Z∼B(m) = 1600.

For Veronica, Z∼V = (mA+mB)2

4 . When Archie and Betty report their pa-
rameters truthfully, mA +mB = 60 so that Z∼V = 900.

Now we find the Y ’s. For Archie,

Y∼A = uA(ȳ(m)) + uB(ȳ(m)) = (mA +mB)ȳ(m)− y(m)2.

When Betty and Veronica reveal their parameters truthfully, we then have

Y∼A = 100× 40− 402 = 2400.

For Betty, when Archie and Veronica reveal their parameters truthfully, we
have

Y∼B = (mA +mV )ȳ(m)− y(m)2 = 80× 40− 402 = 1600.

For Veronica, when Archie and Betty reveal their parameters truthfully, we
have

Y∼V == (mA +mB)ȳ(m)− y(m)2 = 60× 40− 402 = 800.

Now, we can calculate the T ’s when all three reveal their parameters truth-
fully.

For Archie, TA = ZA(m) − YA(m) = 2500 − 2400 = 100. Fof Betty, TB =
1600− 1600 = 0. For Veronica, TV = 900− 800 = 100.

Step 3: Putting it all together, we find that they have a party with 40
guests. Archie has to pay a tax of 100, Betty pays a tax of 0 , and Veronica
has to pay 100. Thus the mechanism achieves a Pareto efficient party size, but
wastes 200.

Stated informally, Archie’s report of his utility function makes for a smaller
party than Betty and Veronica would choose, while Veronica’s report makes
for a larger party than Archie and Betty would choose. Betty’s report doesn’t
change the size of party that the other two would choose. Those who change
the party size, must pay the others for the “inconvenience” that they impose.

What if there are more hosts?

]
Suppose that the party is organized not by just 3 people, but by a dormitory

floor with 21 residents. All of these residents have utility functions of the same
form, as those of Archie, Betty, and Veronica. Seven of them have ai = 20,
seven have ai = 40 and seven have ai = 60. What happens now with the VCG?

If we follow the rules of the VCG, each player submits his or her alleged
value mi of the parameter ai. If all use their weakly dominant strategies, each
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will report mi = ai. The party size y(m) will then be chosen to maximize

(
∑
i

ai)y −
21

2
y2.

This is maximized when

y(m) =

∑
i ai

21
= 40.

If Person i has ai = 20, then the sum of the utilities that the other 20
residents get from the party is

Y∼i(m) = (6× 20 + 7× 40 + 7× 60)40− 10× 402 = 32, 800− 16000 = 16, 800.

The sum of the utility of the other 20 residents would be maximized with y = 41
and takes the value (6× 20 + 7× 40 + 7× 60)41− 10× 412 = 16, 810. Thus in
equilibrium, each of the residents with ai = 20 would have to pay a net amount
of 16810− 16800 = 10.

Similar calculations show that the residents with ai = 40 would pay 0 and
the residents with ai = 60 would each pay 10. The party would be of the
Pareto optimal size, 40. In this case, the total waste from the mechanism is
14× 10 = 140.

Question: What is the amount of waste if you have 3N hosts deciding, with
N of each of the three types described above. What happens in the limit as N
gets large?

Costly Public Goods

What if the public good is costly? Suppose that the total cost of providing y
units of public good is given by an increasing convex function C(y). When the
public good is costly, we need a mechanism that will collect at least as much
tax revenue as is needed to pay for the amount of public good chosen. When
preferences are quasi-linear, the method used for costless public goods can be
applied with a simple modification. The trick is to suppose that in addition to
the VCG taxes Ti(m) described in the previous section, each player must pay a
tax 1

nC(y) when the amount of public good is y.
Where the utility function of Player i is U(xi, y) = xi + ui(y), let us define

vi(y) = ui(y) − 1
nC(y) and define the function V (xi, y) = xi + v(xi, y). Notice

that if ui is concave and C is convex, then vi is a concave function. It is then
reasonable to assume that vi is an increasing function for small values of y and
decreasing when y is sufficiently large.

Now the VCR can be applied directly for players with utility functions
V (xi, y). The central authority announces the cost function C(y) to all players.
Player i is asked to report vi(y) = ui(y)− 1

nC(y). Where mi(y) is the message
from Player i, the central authority chooses ȳ(m) to maximize

∑
imi(y). If

players all report their functions truthfully, this means that ȳ(m) maximizes∑
i

vi(y) =
∑
i

ui(y)− C(y)
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, which is the total consumers’ surplus from y. The central authority then com-
putes VCG taxes Ti(m) ≥ 0 for each player, just as in the previous discussion.
The total tax bill for Player i will be Ti(m) + 1

nC(y) and total revenue will be

∑
i

(
Ti(m) +

1

n
C(y)

)
=
∑
i

(Ti(m)) + C(y) ≥ C(y).

This same exercise will work with predetermined costs shares that are not
equal. In the previous discussion, simply replace the share 1n for Player i with
θi ≥ 0 such that

∑
i θi = 1.

Groves-Ledyard Mechanism

The Groves-Ledyard mechanism has a property that in Nash equilibrium an
efficient amount of public goods is produced and taxes exactly pay for this
amount. Public goods are produced at a constant unit cost c. (This assumption
could be generalized.) Each player is asked to state an amount mi that he or
she would like to add to the amount of public goods supplied. Let

m̄ =
1

n

n∑
i=1

mi

The total amount of public goods supplied will be

y =

n∑
i=1

mi = nm̄.

Let

m̄ĩ =

∑
j 6=imj

n− 1

and let

Ri(m) =
1

n− 2

∑
j 6=i

(mj − m̄ĩ)
2.

If the vector of messages sent by players is m = (m1, . . . ,mn), each player will
pay a tax equal to

c

n
+
γ

2

(
n− 1

n
(mi − m̄i)

2 −Ri(m)

)
The functions Ri(m) have been chosen to have two properties. The first is that
Ri(m) does not depend i any way on mi. The second is that

n∑
i=1

Ri(m) =
n− 1

n

n∑
i=1

(mi − m̄i)
2.
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In this case, player i’s private consumption will be

xi(m) = Wi −
c

n
− γ

2

(
n− 1

n
(mi − m̄i)

2 −Ri(m)

)
and the amount of public goods supplied will be y(m) =

∑n
i=1mi. Therefore

consumer i’s utility with this vector of messages will be U i(xi(m), y(m)). The
derivative of player i’s private consumption with respect to mi is then equal to

c

n
+ γ

n− 1

n
(mi − m̄)

(
1− 1

n

)
=
c

n
+ γ(mi − m̄).

The first order condition for maximizing player i’s utility with with respect to
mi is then seen to be that i’s marginal rate of substitution between public goods
and private goods is just

MRSi =
c

n
+ γ(mi − m̄).

This section needs to be repaired. It is not so interesting to show incentive
compatibility again in this special case. More interesting to calculate net revenue
collected by mechanism and perhaps to add costly production.

A more general quadratic example

Suppose that each of n consumers has utility function

ui(xi, y) = xi + aiy −
1

2
y2

and the message mi sent by consumer i is i’s report of his parameter ai.
Step 1: Where the vector of reported utility parameters is given by m,

the central authority chooses y to maximize the sum of the reported utility
functions. That is, it chooses y to maximize

n∑
i=1

(
miy −

1

2
y2
)

= y

n∑
i=1

mi −
n

2
y2. (2)

Setting the derivative with respect to y equal to zero, we see that this sum
is maximized when y = y(m) where

y(m) =
1

n

∑
i

mi. (3)

Step 2: The central authority makes a sidepayment to each i that is equal
to the sum of the reported utilities of y for all other persons. For any person i,
this means that person i gets a sidepayment equal to

y
∑
j 6=i

mj −
n− 1

2
y2 (4)
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Step 3: The central authority collects from each person, an amount equal
to the maximum possible sum of the reported utilities of the other persons. For
any person i, this amount is equal to

max
y
{y
∑
j 6=i

mj −
(
n− 1

2

)
y2}. (5)

Setting the derivative equal to zero, we see that this sum maximized when

y =

∑
j 6=imj

n− 1

and hence the maximal possible sum of utilities for the other persons is

1

2(N − 1)

∑
j 6=i

m2
j .

Solving Person i’s decision problem:

Where the number of persons attending the party determined by the mech-
anism, given the vector of responses m, is y(m), when we take account of the
payments in steps 2 and 3, Person i will have consumption xi(m) of other goods
where

xi(m) = Wi + y(m)
∑
j 6=i

mj −
n− 1

2
y(m)2 − 1

2(N − 1)

∑
j 6=i

m2
j . (6)

Given that i’s utility function is ui(xi(m), y(m)) = xi(m)+aiy(m)− 1
2y(m)2,

we can calculate i’s utility. In particular to maximize his utility, i will choose
mi that maximizes this utility, which is equal to

ui(xi(m), y(m)) = xi(m) + aiy(m)− 1

2
y(m)2. (7)

To find the response mi that maximizes his utility, i would set the partial
derivative of Equation ?? with respect to mi equal to 0. This implies that

∂xi(m)

∂mi
+ ai

∂y(m)

∂mi
− y(m)

∂y(m)

∂mi
= 0. (8)

From Equation ?? we have
∂y(m)

∂mi
=

1

n
. (9)

From Equations ?? and ?? it follows that

∂xi(m)

∂mi
=

∑
j 6=i

mj

 ∂y(m)

∂mi
− (n− 1)y(m)

∂y(m)

∂mi

=
1

n

∑
j 6=i

mj −
n− 1

n
y(m) (10)
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Then from substituting from ?? and ?? into ?? we have

1

n

ai +
∑
j 6=i

mj

− y(m) = 0 (11)

It follows from Equation ?? and ?? that

1

n

ai +
∑
j 6=i

mj

− n∑
j=1

mj = 0 (12)

which implies that mi = ai. Thus we have demonstrated that whatever numbers
the others claim describe their utility functions, the best response for person i
is to announce his true value mi = ai.

Since this reasoning applies for every individual i, it must be that announc-
ing mi = ai is a dominant strategy for every individual. Hence if all play
their dominant strategies, the quantity of y selected will be the Pareto efficient
quantity 1

n

∑n
i=1 ai that maximizes the sum of utilities.

Groves Ledyard remarks
Let us try applying the Groves-Ledyard mechanism to the same n person

society. In the Groves Ledyard mechanism, each player reports a number mi

and the size chosen for the party is the sum of these numbers. Define the mean
of the reported numbers to be

µ =
1

N

n∑
j=1

mj

and define

µi =

(
1

N − 1

)∑
j 6=i

mj

to be the mean of the numbers named by persons other than i. Define σ2
i to be

the variance of the numbers submitted by persons other than i. If the vector of
numbers submitted is m, each player i will pay a net tax

Ti(m) =
γ

2

(
N − 1

N
(mi − µi)

2 − σ2
i

)
.

With this tax scheme and with the size of party being x =
∑

imi, the utility
of person i will be

Wi + ai
∑
i

mi −
(∑

mi

)2
− Ti(m) (13)

Person i will find his or her best choice of mi by setting the derivative with
respect to mi of Expression ?? equal to zero. This happens when

ai −
∑

mi −
∂Ti(m)

∂mi
= 0
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or equivalently when

ai −
∑

mi = γ

(
N − 1

N
(mi − µi)

)
(14)

A bit of simple algebra1 shows that

N − 1

N
(mi − µi) = mi − µ

and therefore Equation ?? is equivalent to

ai −
∑

mi = γ (mi − µ) (15)

Summing both sides of Equation ?? over n, we find that

n∑
i=1

ai − n
n∑

i=1

= 0 (16)

and therefore
n∑

i=1

mi =
1

n

∑
ai (17)

1Proof is as follows:

mi − µ = mi −
1

N

(
n∑

j=1

mj

)
= mi

(
1−

1

N

)
−

1

N

∑
j 6=i

mj

= mi
N − 1

N
−
N − 1

N
µi

=
N − 1

N
(mi − µi)
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