Calculus conditions for concave functions (of a single variable).

• Recall that a real-valued function f is concave if and only if its domain is a convex set $A \subset \Re_n$ and for all x_1 and x_2 in A and for all $\lambda \in [0, 1]$,

$$
f(\lambda x_1 + (1 - \lambda)x_2) \geq \lambda f(x_1) + (1 - \lambda)f(x_2)
$$

• If $A \subset \Re$, this implies that for all x_1 and x_2 in A and for all $\lambda \in [0, 1]$,

$$
f(x_2) \leq f(x_1) + (x_2 - x_1)f'(x_1).
$$

• Draw some pictures.–See slide for "rooftop theorem"

FROM ROOFTOPS TO SECOND DERIVATIVES.

- The rooftop theorem tells us that if f is concave, $f(x_2) \le f(x_1) + (x_2 - x_1)f'(x_1)$ for all x_1 and x_2 in A.
- Rearranging terms, we have

$$
f(x_2) - f(x_1) \le (x_2 - x_1) f'(x_1).
$$
 (1)

- The rooftop theorem also tells us that if f is concave, $f(x_1) \le f(x_2) + (x_1 - x_2)f'(x_2)$ for all x_1 and x_2 in A.
- Rearranging terms, we have $f(x_1) f(x_2) \le (x_1 x_2) f'(x_2)$.
- Multiply both sides by -1, above implies

$$
f(x_2) - f(x_1) \ge (x_2 - x_1) f'(x_2)
$$
 (2)

• Let $x_2 > x_1$. Then Inequalities 1 and 2 imply that $f'(x_2) \le f'(x_1)$.

Calculus conditions for concave functions (of a single variable).

• Recall that a real-valued function f is concave if and only if its domain is a convex set $A \subset \Re_n$ and for all x_1 and x_2 in A and for all $\lambda \in [0, 1]$,

$$
f(\lambda x_1 + (1 - \lambda)x_2) \geq \lambda f(x_1) + (1 - \lambda)f(x_2)
$$

• If $A \subset \Re$, this implies that for all x_1 and x_2 in A and for all $\lambda \in [0, 1]$,

$$
f(x_2) \leq f(x_1) + (x_2 - x_1)f'(x_1).
$$

• Draw some pictures.–See slide for "rooftop theorem"

FROM ROOFTOPS TO SECOND DERIVATIVES.

- The rooftop theorem tells us that if f is concave, $f(x_2) \le f(x_1) + (x_2 - x_1)f'(x_1)$ for all x_1 and x_2 in A.
- Rearranging terms, we have

$$
f(x_2) - f(x_1) \le (x_2 - x_1) f'(x_1).
$$
 (3)

- The rooftop theorem also tells us that if f is concave, $f(x_1) \le f(x_2) + (x_1 - x_2)f'(x_2)$ for all x_1 and x_2 in A.
- Rearranging terms, we have $f(x_1) f(x_2) \le (x_1 x_2) f'(x_2)$.
- Multiply both sides by -1, above implies

$$
f(x_2) - f(x_1) \ge (x_2 - x_1) f'(x_2)
$$
 (4)

• Let $x_2 > x_1$. Then Inequalities 1 and 2 imply that $f'(x_2) \le f'(x_1)$.

Maxima for differentiable concave functions

- From elementary calculus we know that $f: \Re \to \Re$ and if $f'(x)$ exists and x is in the interior of its domain, then a necessary condition for x to be a local maximum of f on A is that $f'(x) = 0$.
- We also know that a sufficient condition for x to be an interior local max is that $f'(x) = 0$ and $f''(x) < 0$ and $f''(x) < 0$ for all $x \in A$. Is this condition also necessary?
- Show that if f is a concave function and has a local max at x , then it has a global max at x .
- So we know that if f is a concave function such that $f''(x)$ exists everywhere, the $f'(x)=0$ is necessary and sufficient for x to be a global maximum on A.
- Is $f'(x) = 0$ and $f''(x) \le 0$ sufficient for x to be a maximum?

GOING TO HIGHER DIMENSIONS

- Where $f: \Re^n_+ \to \Re$, for all x and y in \Re^n , let us define $g(t) = f(x + t(y - x))$ for all $t \in [0, 1]$
- If f is a concave function, then g must be a concave function.

御 ▶ イヨ ▶ イヨ ▶ │ ヨ

 OQ

- So it must be that $g''(0) \leq 0$.
- So lets find out more about $g''(0)$.

PRODUCING A QUADRATIC FORM

• Applying the chain rule,

$$
g'(t) = (y_i - x_i) \sum_{i=1}^n f_i(x + t(y - x)).
$$

\n- Then
$$
g''(t) = \sum_{i=1}^{n} (y_i - x_i) \frac{d}{dt} f_i(x + t(y - x)).
$$
\n- So
$$
g''(t) = \sum_{i=1}^{n} (y_i - x_i) \sum_{j=1}^{n} (y_j - x_j) f_{ij}(x + t(y - x)).
$$
\n

 -990 4 0 8 → イ団 ト イ ヨ ト イ ヨ ト … 造

Negative semi-definiteness

• We now know that if g is concave, then for all x and y , it must be that

$$
g'(0) = \sum_{i=1}^n \sum_{j=1}^n f_{ij}(x) \leq 0.
$$

- This will be true if and only if the "Hessian" matrix, whose elements are $f_{ii}(x)$ is negative semi-definite.
- That is the case if its principle minors of order k are negative for odd k and positive for even k.

AN EXAMPLE

• Let

$$
f(x_1,x_2)=(x_1+x_2)-\frac{1}{2}(x_1^2+x_2^2)+cx_1x_2
$$

K ロ > K 御 > K 差 > K 差 > → 差 → の Q Q →