
Calculus conditions for concave functions
(of a single variable).

• Recall that a real-valued function f is concave if and only if its domain
is a convex set A ⊂ <n and for all x1 and x2 in A and for all λ ∈ [0, 1],

f (λx1 + (1− λ)x2) ≥ λf (x1) + (1− λ)f (x2)

• If A ⊂ <, this implies that for all x1 and x2 in A and for all λ ∈ [0, 1],

f (x2) ≤ f (x1) + (x2 − x1)f ′(x1).

• Draw some pictures.–See slide for “rooftop theorem”



From rooftops to second derivatives.

• The rooftop theorem tells us that if f is concave,
f (x2) ≤ f (x1) + (x2 − x1)f ′(x1) for all x1 and x2 in A.

• Rearranging terms, we have

f (x2)− f (x1) ≤ (x2 − x1)f ′(x1). (1)

• The rooftop theorem also tells us that if f is concave,
f (x1) ≤ f (x2) + (x1 − x2)f ′(x2) for all x1 and x2 in A.

• Rearranging terms, we have f (x1)− f (x2) ≤ (x1 − x2)f ′(x2).

• Multiply both sides by -1, above implies

f (x2)− f (x1) ≥ (x2 − x1)f ′(x2) (2)

• Let x2 > x1. Then Inequalities 1 and 2 imply that f ′(x2) ≤ f ′(x1).
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Maxima for differentiable concave functions

• From elementary calculus we know that f : < → < and if f ′(x) exists
and x is in the interior of its domain, then a necessary condition for x
to be a local maximum of f on A is that f ′(x) = 0.

• We also know that a sufficient condition for x to be an interior local
max is that f ′(x) = 0 and f ′′(x) < 0 and f ′′(x) < 0 for all x ∈ A. Is
this condition also necessary?

• Show that if f is a concave function and has a local max at x , then it
has a global max at x .

• So we know that if f is a concave function such that f ′′(x) exists
everywhere, the f ′(x) = 0 is necessary and sufficient for x to be a
global maximum on A.

• Is f ′(x) = 0 and f ′′(x) ≤ 0 sufficient for x to be a maximum?



Going to higher dimensions

• Where f : <n
+ → <, for all x and y in <n, let us define

g(t) = f (x + t(y − x)) for all t ∈ [0, 1]

• If f is a concave function, then g must be a concave function.

• So it must be that g ′′(0) ≤ 0.

• So lets find out more about g ′′(0).



Producing a quadratic form

• Applying the chain rule,

g ′(t) = (yi − xi )
n∑

i=1

fi (x + t(y − x)).

• Then

g ′′(t) =
n∑

i=1

(yi − xi )
d

dt
fi (x + t(y − x)).

• So

g ′′(t) =
n∑

i=1

(yi − xi )
n∑

j=1

(yj − xj)fij (x + t(y − x)) .



Negative semi-definiteness

• We now know that if g is concave, then for all x and y , it must be
that

g ′(0) =
n∑

i=1

n∑
j=1

fij(x) ≤ 0.

• This will be true if and only if the “Hessian” matrix, whose elements
are fij(x) is negative semi-definite.

• That is the case if its principle minors of order k are negative for odd
k and positive for even k.



An example

• Let

f (x1, x2) = (x1 + x2)− 1

2
(x21 + x22 ) + cx1x2


