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1. Introduction 

Until the mid-1970s, capital market  efficiency was tested using what are now 
known as returns tests. In these tests the analyst sought to determine whether 
information currently available to investors is correlated with future asset returns. 
For example, past returns, detailed firm data and such macroeconomic variables 
as GNP were all considered as possible explanatory variables in a linear model of 
equity returns. If  nonzero correlations were found, one inferred that the current 
price could be improved upon as a predictor of future prices, suggesting that 
capital markets are not informationally efficient. 

If  capital markets are not informationally efficient in this sense then (under 
additional assumptions) investors who trade actively to exploit these correlations 
can hope to do better on average than investors who buy and hold. If, however, 
markets are informationally efficient, then prices 'fully reflect' available informa- 
tion and there are no exploitable correlations between future returns and current 
information. In the absence of exploitable correlations, active trading rules cannot 
succeed on average. 

Most of the evidence accumulated prior to the 1980s implied that asset markets 
are informationally efficient, at least as a first approximation. Fama's influential 
[1970] paper  surveyed the empirical evidence available up to that date and 
established the conclusion in favor of market efficiency to most academic readerg 
satisfaction (see Fama 1991 for an update). 

LeRoy & Porter [1981] and Shiller [1981], working independently, proposed 
an alternative test of market  efficiency. This test exploited Samuelson's [1965] 
demonstration that, in the context of the stock market, the present-value relation 
is equivalent (subject to a convergence assumption) to the null hypothesis tested 
in the returns tests. The present-value relation states that the current actual 
stock price is the best predictor of the discounted value of future actual divi- 
dends, referred to as the ex-post rational price. More precisely, the present-value 
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relation states that actual current price equals the mathematical expectation of 
ex-post rational price conditional on whatever information investors have avail- 
able: 

where 

p, = E(p[  I It), (1.1) 

o o  

Pt =-" ~ flidt+i" (1.2) 
i=1 

This version of the market efficiency hypothesis suggested to LeRoy & Porter 
and Shiller a strategy for empirical testing which was different from the returns 
tests surveyed by Fama. If price equals discounted expected dividends, then 
price changes occur only when expected dividends change. Expected dividends, 
unfortunately, are not easily measured. However, under rational expectations 
the volatility of changes in expected dividends is related systematically to the 
volatility of changes in actual dividends, which can be estimated. LeRoy & Porter 
and Shiller exploited this line of reasoning to derive the bounds on stock price 
volatility implied by measured dividend volatility. The simplest variance bounds 
relation is 

v(pt) _ v(p;), (1.3) 

which follows from (1.1) plus the result from probability theory that the variance 
of the conditional expectation of a random variable is less than or equal to the 
variance of the random variable itself. LeRoy & Porter and Shiller found that 
these bounds were violated, suggesting that the common journalistic observation 
that stock price changes are in some sense excessive relative to fundamentals may 
have substance. 

Returns tests appeared to accept market efficiency, volatility tests to reject 
it. Both LeRoy & Porter and Shiller suggested a possible explanation for this 
discrepancy: volatility tests have greater power than returns tests. To be sure, 
Shiller provided little, and LeRoy & Porter nothing, by way of specific support for 
this claim. The subsequent variance-bounds literature has returned periodically to 
the question of power, particularly in comparing volatility tests with conventional 
returns tests of market efficiency. The results achieved so far have not been 
conclusive. We believe that this concern with statistical power is not misplaced: 
power is the central concept in analyzing econometric aspects of the variance- 
bounds tests. The related topic of bias in parameter estimation, which has been 
the main focus in much discussion of econometric aspects of the variance-bounds 
literature, is in fact subsidiary: bias causes problems only insofar as it reduces the 
power of a test (for given size), and there is generally no presumption that this 
occurs. 

In Sections 2-4 of this paper we survey the variance-bounds literature and the 
parallel evolution of the literature on returns tests of market efficiency, taking 
power as the organizing principle. In Section 5 we present some new results on 
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the comparative power of volatility and returns tests. Section 6 is the conclusion. 
We recognize that some readers - -  particularly those who want to get the flavor 

of the variance-bounds literature without delving deeply into its econometric side 
- -  may prefer a more general treatment. Such readers should consult LeRoy 
[1984] and West [1988]. LeRoy [1989] discussed the variance-bounds literature in 
its relation to the general question of asset market efficiency. Shiller's [1989] book 
gave introductory treatment, as did Cochrane's [1991] review. Finally, Gilles & 
LeRoy's [1991] survey provided an elementary econometric survey of the variance- 
bounds literature, as here, but focused on bias in parameter  estimators rather than 
power. 

2. Variance-bounds tests of capital  market  efficiency 

2.1. Statistical hypothesis' testing 

It became clear at an early stage of the development of the variance-bounds 
literature that there is a trivial sense in which variance-bounds tests - -  some, at 
least - -  are in fact more powerful than returns tests. To explain this, it is necessary 
first to review the basics of statistical hypothesis testing. 

Whenever a statistical test is constructed, inferences made about the null or 
alternative models are probabilistic rather than deterministic. There is virtually 
always some probability that even if the true data-generating process is the null 
model, the particular data realization sampled by the researcher leads to rejection 
of the null model. Correspondingly, there is generally some chance that even 
though the null model is incorrect, the data under observation conform to it so 
closely that the model cannot be rejected. These ideas lead directly to the concepts 
of size and power. 

A test of the null hypothesis is based upon the estimated values of certain 
parameters in the model. The critical region denotes the range of estimated 
parameter  values for which the null model is rejected. The size of the test is the 
probability that the parameter  estimate lies in the critical region when the null 
hypothesis is true, so that the null model is incorrectly rejected. The power of the 
test is the probability of the same event when the alternative model is true, so that 
the null model is correctly rejected. 

One wants a test that is powerful against all relevant alternative models~ 
This can be achieved simply by specifying a large critical region. Unfortunately, 
specifying a large critical region also increases the size of the test. Because of this 
relation between size and power, there is a trivial sense in which any test can be 
made to have high power: enlarge the critical region. Such a test will produce the 
correct answer with high probability when the null hypothesis is false, but only 
because the test has a high probability of rejecting the null whether it is true or 
false. 

It follows that in comparing the power of two econometric tests, size must be 
held constant. Otherwise the comparison is pointless. 
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2.2. Size and power in variance-bounds tests 

Let us see how these considerations bear on the variance-bounds tests. The 
simplest and best-known of the variance-bounds theorems, introduced as (1.3) 
above, says that the variance of actual stock prices Pt is bounded above by the 
variance of the ex-post rational price p[. One natural way to test (1.3) is to 
examine the volatility statistic, defined to be the difference between the estimated 
variance of p[ and that of Pt. There are several problems involved in constructing 
the statistic, of which the most serious involves trend correction. If Pt and Pt 
have not been corrected for trend the population means and variances are time- 
dependent, implying that population variances cannot be consistently estimated 
by sample variances. The first-generation variance-beunds papers of LeRoy & 
Porter and Shiller ran into difficulty with trend-correction. Subsequent papers, 
however, have remedied this problem [Campbell & Shiller, 1988; LeRoy & Parke, 
1992]. This material is reviewed in Gilles & LeRoy [1991]; repetition here would 
divert attention from the topic of power, so we simply assume that a satisfactory 
trend-correction algorithm has been implemented, implying that pt and p[  are 
stationary. 

It is known that V(pt) is accurately estimated by its sample variance for 
reasonable sample sizes and specifications of investors' information sets, but 
V(Pt)  is more problematic. The fact that p~ depends on dividends beyond any 
finite horizon implies that p[ is unobservable in any finite sample. Grossman & 
Shiller [1981] resolved this problem by defining an observable proxy P/it for the 
unobservable p[ by setting the terminal value P~IT equal to PT and deriving 
earlier values from the recursion 

Ptlr = fl(Pt+llT + dr+l), (2.1) 

an implication of (1.2). They estimated V(p[) by taking the sample variance of 

P/IT" 
It happens that the estimator of V(p'[) just described is severely downward- 

biased in small samples [Flavin, 1983; Kleidon, 1986; see Gilles & LeRoy, 1991, 
for an exposition]. This implies that the mathematical expectation of the volatility 
statistic is smaller than the corresponding population value, and in fact may be 
negative even if the present-value model is true. If the critical region associated 
with a test of the null hypothesis that the present-value model is correct consists of 
all negative values of the volatility statistic, then the downward bias just described 
ensures that the size of the test will be large. Hence even if (1.3) holds in 
the population our sample estimators will typically indicate excess volatility (the 
inequality in the sample counterpart of (t.3) is reversed). 

It has become common to conclude from such reasoning that variance-bounds 
tests are biased toward rejection, and therefore are not credible. This reasoning 
is incorrect, as the choice of zero as a critical value for the volatility statistic is 
entirely arbitrary. To the extent that V(p'~) is estimated with downward bias, the 
probability of incorrectly rejecting the present-value model is increased, but since 
the size of the test was unspecified in the first place, it is difficult to understand in 
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what  sense we have a b iased test. I t  would be more  accurate  to conclude  that  in 
the absence of  some means  of control l ing the size, we have no rea l  test  at  all. This 
is t rue whe the r  or  not  poin t  es t imates  of  pa ramete r s  are  biased.  

I t  is now easy to see the  trivial  sense in which var iance-bounds  tests may have 
higher  power  than convent ional  re turns  tests. The  downward bias in the  es t imate  
of V(p~) just  descr ibed  means  that  if the re ject ion region is specified to be  the  
negative values  of  the  volati l i ty statistic, the var iance-bounds  tests may  be p rone  
to reject  the  null of marke t  efficiency whether  it is false or  not.  This is a po in t  
against  var iance-bounds  tests if marke t  efficiency is in fact true,  but  is a po in t  in 
their  favor if it  is false. Thus by adopt ing a b iased  es t imator  of  V(y[) ,  we have 
increased the power  of  the test  at  the  cost of  increasing its size. This does not  
provide  a useful  b e n c h m a r k  for compar ing  var iance-bounds  tests with re turns  tests 
since we could  increase  both  the  size and power  of  a re turns  test  by enlarging its 
critical region.  A claim for the super ior i ty  of  var iance-bounds  tests can be  based  
only on a showing that  they are  more  powerful  than  re turns  tests for given size, 
and a claim for their  infer ior i ty  must  demons t ra te  the opposi te .  Noth ing  in the  
discussion so far shows e i ther  point .  

To construct  a t rue economet r ic  test based  on the volatili ty statist ic and  to 
compare  this test  with convent ional  marke t  efficiency tests, it is necessary to 
de te rmine  how to choose  the  crit ical value of  the  test statistic so that  the size 
is held to some preass igned level. Tha t  the  es t imator  of  V(p'[) cons t ruc ted  as 
descr ibed above is b iased  is not  necessari ly a p rob lem,  even if the  bias is difficult 
to evaluate  analytically.  Assuming  that  Mon te  Car lo  methods  are used to construct  
critical values,  then  as long as the  es t imate  of V(p'[) is const ructed  in the  same way 
on the artificially genera ted  da ta  as on real -world  data,  the bias is au tomat ica l ly  
al lowed for in the  choice of  the crit ical value. 1 

2.3. The nuisance pararneter problern in testing variance bounds" 

The  fact that  var iance-bounds  tests are tests of an inequal i ty  causes a major  
problem.  The  efficient marke ts  mode l  makes  no restr ic t ion on investors '  infor-  
ma t ion  sets; equivalently,  inequal i ty  (1.3) holds no mat te r  how much  or lit t le 
in format ion  investors have. Thus  there  are many versions of the  null  hypothesis ,  
indexed by a measure  of  investors '  information.  This causes a p rob l e m in sett ing 
the critical value  of the volati l i ty statistic: different  specifications of  investors '  
in format ion  lead to different  crit ical values. The  be t te r  the in format ion  investors 
have about  future  dividends,  the  greater  will be the volat i l i ty of  s tock prices 
unde r  the  efficient markets  model ,  and  therefore  the lower will be the  value of 
V(p'~) - V(pt) that  is impl ied  by marke t  efficiency. The  fact that  the  popu la t ion  
value of V(p~[) - V(pt) associa ted with the present -value  model  depends  on the 

1 This point lay behind Shiller's [1988] reply to Kleidon's [1986] criticism: Shiller granted that 
his estimator of V(p'~) is biased under the conditions assumed by Kleidon, but used simulation 
results to argue that even so the real-world value of the volatility statistic was too far below zero to 
be consistent with market efficiency. 
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extent of investors' information suggests that the same will be true of the critical 
value of the associated sample statistic. (This is not necessarily the case, however, 
because the sample variability of the volatility statistic also depends on the extent 
of investors' information, which complicates the picture). The Monte Carlo sim- 
ulations reported in LeRoy & Parke [1992] imply that for reasonable parameter  
values the critical level of the volatility statistic does indeed depend strongly on 
the extent of investors' information. 

The question becomes how one sets the critical value of the volatility statistic, 
given the dependence of its distribution on a nuisance parameter. One potential 
solution is to vary the amount of information agents are assumed to have, and 
then choose the critical value so that the maximum size of the test is held to some 
preassigned level like 5%. The problem is that in the present setting the nuisance 
parameter  problem is so severe that for most versions of the null hypothesis 
rejection will occur with probability much lower than 1% when the nominal 
probability of Type I error is set at 5%. With the acceptance region set so large, 
the test will have very low power. There is no way to avoid the fact that when a 
severe nuisance parameter  problem occurs, the size and power of any statistical 
test are essentially impossible to evaluate no matter how one chooses the rejection 
region. 

This argument, presented in LeRoy & Parke [1992], implies that hypothesis 
testing of the variance-bounds inequality is essentially impossible. The point 
was not noticed earlier, and is still not widely appreciated, because of the 
practice prevailing in the variance-bounds literature (discussed above) of implicitly 
identifying the critical value of the^volatility^statistic with zero - -  so that the 
present-value model is accepted if V(pt) <_ V(p[) and rejected in the opposite 
case - -  despite the absence of any justification for this identification. We already 
saw that if the critical value of the volatility statistic is set equal to zero and if a 
downward-biased estimate of V(pt) is used, rejection of market  efficiency is to be 
expected, but these tests have a large size. More recent papers, such as Cochrane 
[1992], use better estimates of V(p'~) and fail to reject the efficient market  model 
based on the sample counterpart of the variance-bounds inequality. However, 
these papers do not take cognizance of the nuisance parameter  problem. 

2.4. Summary 

Thinking about statistical power in the context of variance-bounds tests leads to 
serious questions about their interpretation: it is pointless to compare the power 
of variance-bounds and returns tests without holding size constant. But because 
the probability distribution of the volatility statistic depends on the extent of 
investors' information, which is unrestricted under market  efficiency, there is no 
way to hold constant the size of a variance-bounds test. 

The practice in the variance-bounds literature has been to reject market  effi- 
ciency when the sample counterpart of the variance inequality is not satisfied. This 
arbitrary choice of rejection region has the obvious implication that if a downward- 
biased estimator of V(p[) is used, and if investors have considerable information 



Ch. 14. Volatility 417 

about future dividends (so that V(pt) is high under the null hypothesis) then the 
test is likely to have a large size and, correspondingly, high power. If an unbiased 
estimator of V(p~[) is used, the size is smaller, but the power is lower as well. It 
appears that little is learned by actually conducting such tests: there is no point in 
verifying that some particular variance-bounds test rejects or fails to reject market 
efficiency if one has no way to evaluate the probabilities of these outcomes under 
the null hypothesis of market efficiency or under some alternative. 

3. Returns  tests  

Defenders of efficient capital markets rejected the contention that the variance- 
bounds tests demonstrated the excess volatility of asset prices, and the discussion 
of the preceding section suggests that they had some justification for doing so. The 
main problem, as we saw, was that nothing can be concluded from the fact that 
point estimates of V(pt) and V(p[) reverse the variance-bounds inequality in the 
absence of a showing that such an outcome would be unlikely if the present-value 
model were correct. 2 Further, the critical value of the volatility statistic depends 
upon a nuisance parameter that reflects how much information agents have. 
Because the present value model does not specify the amount of information 
agents have, it appears that there is no way to remedy this problem and draw valid 
inferences from variance-bounds tests. 

However, just as researchers were dismissing the conclusion of variance bounds 
tests in favor of those of returns tests, and thereby reaffirming the earlier 
conclusion in favor of the present-value model, the latter tests were undergoing 
a major reappraisal. Fama & French [1988] and Poterba & Summers [1988] 
reexamined the autocorrelation of rates of return on stock. Unlike the earlier 
papers discussed in Fama [1970], in which daily and weekly returns were used, 
Fama & French and Poterba & Summers looked at autocorrelation of returns 
averaged over months and years. They found that over these long horizons returns 
are significantly autocorrelated. The average return from t - T to T predicts about 
35% of the variation of the average return from t to t + T, for T on the order 
of three to five years. The correlation is negative, so that low returns in the past 
predict high returns in the future. 

The finding that stock returns are autocorrelated at long horizons parallels 
the excess volatility findings: many of the alternatives to the present-value model 
that would produce negatively autocorrelated returns would also generate excess 
volatility. For example, investor overreaction to relevant information would pro- 
duce both negative return autocorrelation and excess price volatility. Alternatively, 

2 LeRoy & Porter [1981] presented evidence that tile rejections implied by the point estimates 
of volatility parameters were of borderline statistical significance at conventional levels, based on 
asymptotic distributions. However, because of bias induced by faulty trend correction this evidence 
was of questionable validity. Also, a showing of small-sample bias raised questions about the 
applicability of asymptotic distribution theory. 
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suppose that stock prices are modeled as the sum of the value implied by the 
present-value relation and a noise term which is independent of fundamentals. 
Again, both negatively autocorrelated returns and excess volatility would result. 

The finding that stock prices contain a mean-reverting component, like the 
finding of excess volatility, has been subjected to criticism. Kim, Nelson & Startz 
[1991] contended that much or all of the evidence of mean-reversion disappears if 
data from the 1930s are dropped from the sample (however, this finding has been 
questioned by Cogley [1991]). Similarly, Richardson [1993] took issue with Fama 
& French's analysis on econometric grounds. 

The contrasting outcomes of variance-bounds and returns tests reported in 
the introduction appears now to be reversed. The original variance-bounds tests 
rejected the present-value model, whereas the earlier returns tests accepted it; the 
upshot of the discussion so far, however, is that the best evidence rejecting the 
present-value model comes from returns tests, not variance-bounds tests. 

4. Orthogonality tests 

4.1. Introduction 

In criticizing volatility tests, we followed precedent in identifying these with the 
bounds test 

V(pt) <_ V(p;) ,  (4.1) 

the simplest and best-known volatility implication of the present-value relation. 
We saw that inequality (4.1) is essentially untestable because the present-value 
relation leaves investors' information unrestricted, rendering it impossible to set 
critical values for the rejection region. However, bounds tests are not the only kind 
of volatility test; we also have orthogonality tests. These, although less familiar, 
are better-behaved econometrically than bounds tests: as we will see, they are 
less subject than bounds tests to the nuisance parameter problem discussed in 
Section 2. 

The simplest orthogonality test is derived by iterating the definition of returns 
(as the sum of dividends plus capital gain) to obtain 

oo 

P; = Pt @ ~ [~i (pt+i ~- dt+i -- /~-l Dt+i-l).  ( 4 . 2 )  
i=1 

Taking variances in (4.2) and invoking the orthogonality of the two terms oil the 
right-hand side of (4.2) yields 

fl2V (pt+l + dt+l - fl -I pt)  
V(p?) = V(pt) + 1 - f12 ' (4.3) 

assuming that these variances are constant over time [see LeRoy, 1989, and Gilles 
& LeRoy, 1991, for more discussion]. 
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The  orthogonali ty test (4.3) has a somewhat  different in terpreta t ion f rom the 
bounds test (4.1). The  present-value model  is seen in (4.3) to provide a joint 
restriction on the volatility of price and that of excess payoffs, not  just on the 
volatility of  price as with the bounds  test. Because (4.3) holds as an equality for 
any specification of investors '  information,  the orthogonali ty test provides a way 
of partly circumventing the nuisance pa rame te r  p rob lem that  plagues the bounds  
test (4.1): variat ions in rn affect V(p t ) ,  but  the effect is precisely offset by an equal  
and opposi te  effect on the r ight-most  t e rm of (4.3). 3 Both effects are allowed for 
in the test. It  was for this reason that  LeRoy  & Porter  placed pr imary reliance on 
their version of the orthogonali ty test ra ther  than the bounds test in concluding 
that  volatility is excessive (al though the reader  will not find a clear discussion of 
the distinction be tween  bounds  and orthogonali ty tests in that  paper) .  

Orthogonal i ty  tests provide statistically significant evidence of excess volatility 
[LeRoy & Parke,  1992]: no ma t t e r  how one specifies investors '  information,  the 
volatility statistic based on (4.3) (i.e., its left-hand side less its r ight-hand side, 
with popula t ion paramete rs  replaced by their sample counterpar ts)  is significantly 
negative. 

4. 2. Relative power  o f  volatility and  returns tests" 

The  empirical  evidence to date indicates that  both  returns tests and volatility 
tests reject the present-value model .  Reject ion appears  to be  of  border l ine  sig- 
nificance in the case of  returns tests (and is subject to question on econometr ic  
grounds), but  is clearly significant in the case of volatility tests. Since both  types 
of test give essentially the same answer, determining which of these tests is more  
powerful  - -  the focus of  this pape r  - -  is a less urgent  topic than it would be if their 
outcomes differed. Nonetheless,  it is well worth investigating, and we now do so. 

It seems unlikely that  any conclusion about  the general  superiori ty of one 
test over the other  will be forthcoming.  Instead, volatility tests are likely to be  
more  powerful  than  returns tests under  some alternatives and less powerful  under  
others. To see that  the relative power  of two tests of some null hypothesis  generally 
depends on the alternative hypothesis,  we turn to a more  familiar example.  
Consider testing the irrelevance of xl and x2 in the linear regression mode l  

Yt = /30 -b ~lXlt q- fl2x2t q- fit. (4.4) 

One straightforward approach  is based upon testing 

H0:  fll =/32 = 0 (4.5) 

against the al ternative 

H1 : fll or/32 ~ 0. (4.6) 

3 However, even for the orthogonality test the sample characteristics of tile statistic correspond- 
ing to this parameter depend on investors' information, as will be seen below. Therefore even under 
the orthogonality test the nuisance parameter problem, although much mitigated, is still with us. 
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Fig. 1. Critical regions for testing fll = ~2 = 0. 

Since the test statistics are the sample regression coefficients fil and fi2, the critical 
region is given by the ellipsoid in Figure 1: 

One could also form a test of fil = /32 = 0 based only upon /31, leading to 
H6 : /31 = 0 and H~ : /31 ~& 0. The critical region for this test is given by the area 
between the two vertical lines in the figure. If  the size of  each test is 5%, for 
example, then the probability of obtaining values in the ellipsoid given/4o is equal 
to the probability of obtaining values between the two vertical lines given H~. Thus 
by construction the two tests work equally well when HI) is t r u e .  

There  is no presumption that under  an alternative hypothesis the probabilities 
of  the regions in which the tests give different outcomes is the same. For example, 
under  an alternative hypothesis with /31 = 0 and /32 ¢ 0 the test that  ignores 
the implication of the model  for/32 is likely incorrectly to fail to reject the null. 
However,  if the alternative hypothesis has /31 ~ 0 and /32 = 0, ignoring the 
implications of  the model  for/32 is a virtue since the test involving only the statistic 
for/31 is more  likely to reject the null hypothesis when it is false. 4 

4 Cochrane [1991] argued that because volatility tests and return tests use the same instruments, 
they are likely to have the same power. This argument ignores the fact, just discussed, that the 
power of different tests generally depends on the alternative hypothesis, even if the tests use the 
same instruments. It follows that return and volatility tests do not necessarily have equal power 
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LeRoy & Porter and Shiller supposed that something similar was occurring with 
the volatility tests: by ignoring some implications of the present-value relation 
in order to focus on its implications for price and return variance, the volatility 
tests were in effect searching for violations in the right direction, whereas a test 
that searches in all directions for violations necessarily searches less thoroughly. 
Although LeRoy & Porter and Shiller suggested this possibility, they provided no 
concrete evidence supporting the suggestion. 

4.3. Two orthogonality tests for the geometric random walk 

The orthogonality test discussed above says that the variance of actual price 
plus that of returns (multiplied by a constant) equals the variance of the ex- 
post rational price (4.3). This version of the orthogonality test has the virtue 
of simplicity, but also has the major drawback that it requires the assumption 
that dividends are stationary, necessitating a t r e n d  correction. To avoid trend- 
correction questions, we replaced (4.3) with 

fi2 {V(pt/dt) + [E(pt/dt)] 2 } V(rt) (4.7) 
Y(pt /d t )  = Y(pt/dt)  + 1 --  fl2(O-2 -}- /Z 2) 

[see LeRoy & Parke, 1992, for a derivation]. Here # and o~ are the mean 
and standard deviation, respectively, of the dividend growth rate. Equation (4.7) 
is analogous to (4.3) except that in (4.7) the extensive variables p~, Pt and 
Pt+l + dt+l - fl-1Pt are replaced by the intensive variables p'[/dt, pt/dt and rt, 
(the rate of return: rt+l - [Pt+l + dt+t - Pt]/Pt). Qualitatively, the interpretation 
of (4.7) is the same as that of (4.3): in (4.7) the variance of the price-dividend 
ratio plus (a function of) the variance of the rate of return equals the variance 
of the ex-post rational price-dividend ratio. The more information investors have, 
the higher is V(pt/dt)  and the lower is g(rt). 

Just as (4.3) required that the extensive variables p~[, pt and (P~+I + d~+l - 
fl-1Pt) have constant variances, (4.7) requires that the intensive variables p~[/dt, 
pt/dt and rt have constant variances. If dividends are generated by a log-linear 
process (and assuming that information revelation is regular), this property will 
be satisfied for the intensive variables even though dividends, and therefore stock 
prices, have upward trends. Thus no further trend-correction is necessary. 

The volatility statistic associated with (4.7) is computed by calculating the 
sample moments (/(pt/dt), (/(rt), E(dt+l/dt) and V(dt+l/dt), where the sam- 
ple variances are the average squared deviations around sample means, and 
substituting these for V(pt/dt) ,  V(rt), # and cr 2 in (4.7). We estimated 13 from 

~ ( p t / d t ) =  fl~ 1 -/~/2" (4.8) 

against any particular alternative. Also, Cochrane's argument makes no allowance for the fact that 
because return tests and volatility tests use ditferent auxilim2¢ hypotheses, they are in effect tests of 
different versions of market efficiency. 
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It remains to select an estimator of V (p[/dt). There are two types of estimators 
of V(p[/dt): model-free and model-based [Gilles & LeRoy, 1991]. A model- 
free estimator directly constructs an observable counterpart to the unobservable 
p~ series and takes the sample variance of the implied p'[/dt series. A model- 
based estimator is derived by postulating a dividends model and deriving an 
expression for V(p'[/dt) in terms of/3 and the parameters of the dividends model. 
Then V(p[/dt)  is estimated by substituting parameter  estimates in the derived 
expression. Model-free estimators have the advantage that they do not add a 
dividends model to the null model being tested, but model-based tests have the 
advantage that they are much less subject to sample variation [LeRoy & Parke, 
1992]. Our model-free estimator of V(p~[/dt) was the sample variance of P~lr/dt, 
where P~IT is defined in (2.1). 

Our model-based estimator of V(p'[/dt) was constructed from the geometric 
random walk: 

dt+ 1 : dt~-t+l, (4.9) 

where E(6t) = /z, V(~st+l) : 0 -2, and the ct are independently and identically 
distributed. Under  the geometric random walk 

/32cr2 

V(p?/dt) = [l - / 3 2 ( 0 2  q-/./,2)1(1 - /3]d , )  2 '  (4.10) 

implying that the model-based estimate of V(p[/dt) is: 

j~2~-2 
V(p;/dt)  = 

[1 - f i2 (82  + / 2 2 ) ] ( 1  _ fi2/22)" (4 .11)  

In each case the sample statistic S is just the left-hand side of (4.7) less its 
right-hand side, with sample statistics replacing population parameters as ju~  
indicated. If the mode lbe ing  tested is that which actually generated the data, S 
should be near zero; if S is significantly different from zero, the model is rejected. 
Specifically, excess volatility would cause (1(pt/&) and ~'(rt) to be high, leading 
to a significantly negative value of S. 

5. M o n t e  C a r l o  tes ts  

5.1. Monte Carlo evaluations of volatility testa" 

We constructed Monte Carlo evaluations of the size and power of the model- 
based bounds test, and both the model-flee and model-based orthogonality tests, 
by assuming that dividends were generated by a geometric random walk with 
normal innovations. 5 We set the mean and standard deviation of the dividend 

5 We conducted tests of the model-free bounds test, but do not report them because they are 
subject to the same critical shortcomings as the model-based bounds test, reported below. 
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growth rate equal to those reported by LeRoy & Parke [1992] for annual US 
aggregate dividends (#  = 1.0216, o .2 = 0.0153). Simulated stock prices were 
calculated using an annual discount factor of 0.9350, the value estimated by 
LeRoy & Parke. For each iteration, we simulated a time-series for both prices 
and dividends of length 117 to accord with our annual data set. We performed 
10,000 iterations, each time saving the values of the test statistics, which we used 
to construct a simulated distribution. The critical values for our test statistics were 
then based on the 5%-tail of the simulated distribution in the direction associated 
with excess volatility. 

As noted in Section 2 the present-value model being tested is a compound null 
hypothesis, with different versions implied by different specifications of investors' 
information. The stock price series associated with a given dividend sample path 
depends on how much information investors are assumed to have, implying that 
for bounds tests the population parameter  corresponding to the test statistic, 
V(y[ /d t )  - V(pt /dt ) ,  takes on different values under different versions of the null 
hypothesis. A major advantage of the orthogonality test is that this problem does 
not occur: the parameter  being tested equals zero under all versions of the null 
hypothesis. 

To parametrize the dependence of stock price on investors' information, we 
assumed that investors have information variables which enable them to see ahead 
exactly m periods, for various values of m. This device was used by Gilles & 
LeRoy [1991] and LeRoy & Parke [1992]. For m =0 investors extrapolate future 
dividends from current dividends using the constant growth rate implied by the 
geometric random walk, implying that the price-dividend ratio is constant over 
time. Investors at t know actual dividends up to t ÷ m and extrapolate dividends 
beyond t + m by applying a constant growth rate to dt+m. The higher the value 
of m, the higher is V(pt /d t )  and the lower is V(rt); as m approaches infinity, 
g ( p ~ / d t )  approaches g ( y [ / d t )  and g(rt) approaches zero. 

We limited the Monte Carlo runs to m < 5. The reason is that with m = 5 
the predicted volatility of the price-dividend ratio under the null hypothesis 
approximately equals the volatility of the real-world price-dividend ratio [LeRoy 
& Parke, 1992]. Thus for m > 5 the volatility of the price-dividend ratio predicted 
by the model is greater than that observed in the real-world data under both the 
null hypothesis and the alternative, so these cases can be discarded at the outset 
as empirically irrelevant. 

To evaluate the power of the test just described, we repeated the calculations 
of the mean and standard deviation of the test statistic assuming that stock prices 
equal those implied under various values of rn by the null hypothesis plus a white 
noise term: 

pt/dt  = F~(p~/clt I It) + y~t, (5.1) 

where r h has unit variance, as compared to a variance of pt /d t  of 89.3. We 
then calculated power by estimating the mean and standard deviation of the 
test statistic over 10,000 simulated time series generated under this alternative 
hypothesis. Again using the simulated finite-sample distribution, we calculated the 
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power of each test as the probability that the test statistic generated under the 
alternative lies in the rejection region as computed under the null. 

5.2. Regression tests" as a benchmark 

As a benchmark to evaluate the power of" the bounds and volatility tests, we 
performed similar power calculations for two regression tests: 

rt+l = c~ + ~rt + ~1l (5.2) 

and 

rt+l = y + 6 ( P ~ )  + ~2t. (5.3) 

The null hypothesis implies that ¢~ = 0 and 3 = 0. Under the alternative 
hypothesis, /3 and 8 are negative. This is so because a positive realization of the 
noise term at t is correlated with high values of rt and pt /d t ,  and also with 
low values of rt+l. Therefore a one-tail test of the present-value model can be 
constructed by setting the rejection region as the lower 5% tail of fi and ~. 

The reason we concentrated on a white noise alternative - -  despite the fact that 
fads are usually modeled as highly autocorrelated noise processes - -  is that under 
a white noise alternative it is easy to determine the most powerful regression 
test of the present-value model: regress rt+l on rt. Including lagged returns 
as regressors will only dissipate degrees of freedom since lagged returns have 
population coefficients of zero under both the null and the alternative. However, 
we present evidence below that our results on power carry over when noise is 
autocorrelated. 

The regression tests just outlined have the major advantage that, under the 
null hypothesis, they are free of nuisance parameter  problems. For the regression 
tests, like the orthogonality test but unlike the bounds test, the value of the 
population parameter  is zero under all versions of the null hypothesis (i.e., 
under any specification of investors' information). However, it is also true of 
regression tests, unlike both the volatility tests, that the probability distribution 
of the corresponding test statistic does not depend on investors' information. Put 
differently, in the regressions the t-test for/~ = 0 and ~ = 0 allows construction 
of a 5% rejection region under any specification of investors' information. Under 
the orthogonality tests, in contrast, it is necessary to make allowance for the fact 
that for any critical value of the test statistic the size of the test may depend 
on investors' information. This dependence complicates the interpretation of the 
results. 

5.3. Monte  Carlo results 

~Ihbles 1 and 2 report the mean and standard deviation of the test statistic for 
each of the five tests outlined above - -  three volatility tests and two regression 
tests - -  under the null hypothesis and the alternative hypothesis, respectively. 



Ch. 14. Volatility 

Table 1 

Mean / standard deviation of test statistics; null hypothesis: present-value model 

425 

m Volatility tests Regression tests 

(1) (2) (3) (4) (5) 
Bounds Model-free Model-based rt+l on rt r~+l on pt/dt 

orthogonality orthogonality 

1 83.2 / 13.1 43.2 / 37.5 0.0 / 1.0 0.0 / 0.09 0.0 / 0.004 
2 77.2 / 12 .7  -42.4 / 38.4 0.3 / 2.2 0.0 / 0.09 0.0 / 0.004 
3 71.7 / 12 .9  -41.3 / 39.8 0.9 / 3.6 0.0 / 0.09 0.0 / 0.002 
4 66.8 / 13 .6  -40.3 / 39.5 1.6 / 5.3 0.0 / 0.09 0.0 / 0.002 
5 62.5 / 14 .6  -39.2 / 38.2 2.5 / 7.2 0.0 / 0.09 0.0 / 0.002 

Table 2 
Mean / standard deviation of test statistics; alternativc hypothesis: present-value 
model plus noise 

m Volatility tests Regression tests 

(1) (2) (3) (4) (5) 
Bounds Model-free Model-based rt+l on rt rt+ 1 on p~/d~ 

orthogonality orthogonality 

1 82.2 / 13.1 -86.7 / 42.8 -29.1 / 11.1 -0.13 / 0.09 -0.0004 / 0.005 
2 76.2 / 12.7 -88.7 / 41.4 -30.4 / 11 .2  -0.14 / 0.09 -0.0004 / 0.003 
3 70.7 / 13.0 -90.0 / 43.0 -31.4 / 11 .9  -0.16 / 0.09 -0.0005 / 0.003 
4 65.8 / 13.7 -89.9 / 43.2 -31.8 / 12 .6  -0.17 / 0.09 -0.0005 / 0.002 
5 61.5 / 14.7 -91.2 / 41.9 -32.3 / 14.1 -0.18 / 0.09 -0.0006 / 0.002 

C o l u m n  1 of  Table 2 shows that ,  as expected,  the m e a n  va lue  of the  test  stat ist ic 

u n d e r  the  b o u n d s  tests decreases  wi th  m. C o m p a r i s o n  of  c o l u m n  1 of  Tables 1 
and  2 shows that ,  aga in  as expected ,  the  no ise  t e r m  lowers the  m e a n  of  the  test  
statistic. However ,  the  effect is m i n o r  relat ive to b o t h  the  s t anda rd  dev i a t i on  of 
the  test  stat ist ic a n d  the  effect of  m o n  the  test  statistic. We see a l ready  tha t  the  
b o u n d s  test  is l ikely n o t  to be  very good  at de tec t ing  the  p r e sence  of noise .  

C o l u m n  2 of Table 1 shows that  u n d e r  the  nu l l  hypothes is  the  tes t  statistics 
for the  m o d e l - f r e e  o r thogona l i t y  tes t  average a b o u t  one  s t a n d a r d  dev i a t i on  be low 
zero, ref lect ing the  w e l l - d o c u m e n t e d  downward  bias in  the  mode l - f r ee  e s t ima te  
of V ( p [ / d t ) .  T h e  c o r r e s p o n d i n g  c o l u m n  of  Table 2 shows tha t  the  tes t  statist ic 
averages  a b o u t  two s t a n d a r d  dev ia t ions  be low zero  w h e n  whi te  no i se  is p resen t .  
In  sharp  con t ras t  to the  b o u n d s  test, the  behav io r  of  the  test  stat ist ic u n d e r  e i ther  
the  nu l l  or  the  a l t e rna t ive  does  n o t  d e p e n d  significantly on  inves tors '  i n fo rma-  
t ion.  T h e  r e a s o n  that  the  no i se  has a grea ter  effect on  the  test  stat ist ic u n d e r  

the  m o d e l - f r e e  o r thogona l i ty  test  is tha t  in  the  r igh tmos t  t e r m  in  (4.7), V(rt)  
is mul t ip l i ed  by a large n u m b e r ;  the  effect of  the  no ise  t e r m  o n  V ( p t / d t )  is 
m i n o r  by compar i son .  In  the  m o d e l - b a s e d  o r thogona l i ty  test  the  effect of  no ise  
on  the  test  stat ist ic ( c o l u m n  3) is c o m p a r a b l e  in  m a g n i t u d e  to its effect in the  
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m o d e l - f r e e  t e s t .  H o w e v e r ,  s a m p l i n g  v a r i a t i o n  is m u c h  l o w e r  w i t h  t h e  m o d e l -  

b a s e d  o r t h o g o n a l i t y  t e s t ,  e s p e c i a l l y  u n d e r  t h e  n u l l  h y p o t h e s i s .  I n  t h e  r e g r e s s i o n  

t e s t s ,  t h e  w h i t e  n o i s e  t e r m  i n d u c e s  n e g a t i v e  a u t o c o r r e l a t i o n  o f  b o r d e r l i n e  s t a t i s -  

t i c a l  s i g n i f i c a n c e  i n  s u c c e s s i v e  r a t e s  o f  r e t u r n  ( T a b l e  2, c o l u m n  4).  I n  c o n t r a s t ,  

t h e  c o e f f i c i e n t  i n  t h e  r e g r e s s i o n  o f  rt+l o n  P t / ~  is e s s e n t i a l l y  z e r o  u n d e r  t h e  

a l t e r n a t i v e .  

T a b l e s  3 a n d  4 s h o w  t h e  s i ze  a n d  p o w e r  o f  t h e  f ive  t e s t s  u n d e r  c o n s i d e r a t i o n .  

W e  c o m p u t e d  s i ze  a n d  p o w e r  u n d e r  a r e p r e s e n t a t i v e  v a l u e  o f  m :  m = 2 ( T a b l e  3) ,  

a n d  u n d e r  t h e  m a x i m u m  r e a s o n a b l e  v a l u e  o f  m :  m = 5 ( T a b l e  4).  C o l u m n  1 o f  

e i t h e r  T a b l e  3 o r  T a b l e  4 s h o w s  t h a t  t h e  s i ze  a n d  p o w e r  o f  t h e  b o u n d s  t e s t  d e p e n d  

Table 3 * 

Size / power of tests; critical region based on m = 2 

m Volatility tests Regression tests 

(1) (2) (3) (4) (5) 
Bounds Model-free Model-based rt+l on rt rt+a on pt/dt 

orthogonality orthogonality 

l 0.01 / 0.01 0.04 / 0.63 0.00 / 0.99 0.06 / 0.40 0.06 / 0.06 
2 0:03 / 0.04 0.05 / 0.66 0.04 / 0.99 0.06 / 0.47 0.06 / 0.06 
3 0 .11 /0 .13  0 .04/0 .65 0 .11/0 .99  0 .06 /0 .52  0 .07/0 .05  
4 0.23 / 0.26 0.04 / 0.67 0.16 / 0.99 0.06 / 0.58 0.07 / 0.05 
5 0.37 / 0.39 0.04 / 0.65 0.19 / 0.99 0.06 / 0.65 0.08 / 0.06 

Size = probability of rejecting the present-value model when it is true; 
power = probability of rejecting the present-value model when it is false. 

Table 4 * 

Size / power of tests; critical region based on tn = 5 

m Volatility tests Regression tests 

(1) (2) (3) (4) (5) 
Bounds Model-free Model-based rt+l on rt rt+l on pt/dt 

orthogonality orthogonality 

1 0.00 / 0.00 0.06 / 0.66 0.00 / 0.97 0.06 / 0.40 0.06 / 0.06 
2 0.00 / 0.00 0.05 / 0.68 0.00 / 0.98 0.06 / 0.47 0.06 / 0.06 
3 0.00 / 0.00 0.04 / 0.67 0.01 / 0.98 0.06 / 0.52 0.07 / 0.06 
4 0.01 / 0.01 0.05 / 0.69 0.03 / 0.98 0.06 / 0.58 0.07 / 0.05 
5 0.03 / 0.04 0.05 / 0.67 0.06 / 0.99 0.06 / 0.65 0.08 / 0.06 

Size = probability of rejecting the present-value model when it is true; 
power = probability of rejecting the present-value model when it is false. 

* Note that  some of the values which should equal 0.05 from the construction 
of the tables actually equal 0.03, 0.04 or 0.06. This discrepancy primarily 
reflects the normal approximation used to set rejection regions. Also, sample 
variation is important  in estimating tail probabilities, even with 10,000 draws. 
Finally, the reported values reflect roundoff error. 
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strongly on m, and also that size is virtually equal to power. Thus, as expected from 
the discussion of Tables 1 and 2, the bounds test is virtually useless in detecting 
the presence of the noise term. 

Column 2 of Tables 3 and 4 shows that, when the rejection region for the model- 
free orthogonality test is chosen so that the null is rejected with 5% probability 
when it is true, it is rejected about two-thirds of the time when it is false. These 
figures are essentially unaffected by m. In contrast, the fact that the mean and stan- 
dard deviation of the model-based orthogonality test statistic depend on m means 
that for fixed rejection region the size and power of the test do so as well (col- 
umn 3). However, the very low sampling variation of the model-based orthogonal~. 
ity test statistic means that the nuisance parameter  problem can be easily handled: 

set t ing a large acceptance region, as in Table 4, implies that the null hypothesis is al- 
most sure not to be rejected if it is true and is almost sure to be rejected if it is false. 

The regression of rt+l on rt has power that ranges from 0.40 to 0.65, depending 
on m, when size is set at 0.05 (column 4). Thus a regression of rt+l on rt has 
some ability to detect noise, but much less than the model-based orthogonality 
test. It is interesting to observe that the nuisance parameter  problem reappears 
with the test based on regressing rt+l on rt: even though size does not depend 
on m, the power of the test does. (Note that, while regression theory guarantees 
that regression tests are free of nuisance parameter  problems under the null, it 
provides no such assurance under the alternative). Finally, the regression of rt+l 
on pt/dt (column 5), like the bounds test, is completely unable to detect the 
presence of noise. In fact, for some values of m (m = 3, 4, 5), the presence of 
noise actually increases the probability that we fail to reject the null hypothesis. 
This occurs because the correlation between the noise and pt/dt is so tow that the 
noise acts essentially only to increase the variance of pt/dt, leading the coefficient 
in the regression of rt+l to be biased toward zero. This effect is familiar from the 
errors-in-variables problem of econometrics. 

It is important to understand why the model-based orthogonality test performs 
so much better than the other tests. Observe that if a researcher knew m, then 
both V(pt/dt)  and V(rt) could be expressed as functions of/3, m , / z  and o -2, just 
as V(pt /d t )  is given by (4.10) as a function of /3, /~ and o-2. Observe further 
that if these functions, along with expression (4.11) for V(Pt/dt) ,  are inserted in 
(4.7), the result is an identity in/~, m, /~  and ~r. Consequently, S equals zero for 
any m even though the estimated values of fi, /z and o- are substituted for their 
population counterparts in (4.7). 

Of course, the researcher who does not know m must use the model-free 
estimates of V(pt/dt)  and V(rt) - -  i.e., thei r  sample variances. It follows that 
if the null hypothesis is true, variations in S are entirely attributable to the 
differences between the model-free estimates of V(pt/dt) and V(rt) and their 
model-based counterparts. These differences are small, and are correlated in 
such a way that the orthogonatity test statistic has low variance under the null 
hypothesis (Table 1). Therefore the orthogonality test is very likely to detect noise 
if it is present. This argument is similar to that of Durlauf & Hail [1989] to the 
effect that orthogonality tests are more powerful than bounds tests. 
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5.4. Robustness to re.specified dividend processes 

These results show that the model-free orthogonality test has somewhat better 
ability to detect noise than the most powerful regression test, particularly for low 
m. For the model-based orthogonality test, power is far greater. However, it will be 
objected that the playing field is not level. Both versions of the orthogonality test 
required, in addition to the present-value model, the specification that V(p[/dt) ,  
V(pt/d¢) and V(rt) are constant over time. The model-based orthogonality test 
required further that dividends be generated by a geometric random walk. The 
regression tests, in contrast, do not require either assumption. The simulations 
used to evaluate the tests were based on the geometric random walk model, so 
that the additional specifications adopted for the orthogonality tests were satisfied 
by construction in the population used to evaluate the two classes of test. It is not 
surprising that the tests requiring a more restrictive specification perform better 
than the tests not requiring the more restrictive specification, given a setting in 
which the added restrictions are valid by assumption. 

The suggestion is that the superiority of the orthogonality tests may disappear 
in settings where the moment  variances are nonconstant or where the geometric 
random walk is a misspecification. That the orthogonality test lacks robustness 
to alternative dividend specifications is a very real possibility, and this question 
deserves more thorough study than we have given it. However, we have two 
preliminary results to report. 

We considered an environment in which the geometric random walk is a 
gross misspecification: if dividends are generated by a stationary model rather 
than an integrated model the orthogonality relation (4.7) is invalid. We verified 
by Monte Carlo methods that application of (4.7) resulted in virtually 100% 
rejection frequencies if dividends are stationary whether the null hypothesis was 
true or false. Analysts who are not willing to stipulate that dividends have a unit 
root will regard as a major limitation of the orthogonality test the fact that it 
breaks down if the form (stationary or unit root) of the dividend process is mis- 
specified. 

What  happens if dividends are log-linear and have a unit root, but are generated 
by a model less parsimonious than the geometric random walk? In that setting 
the model-free orthogonality test remains valid, but the model-based test does 
not since then expression (4.10) for V(p[/d t )  in terms of /z, ~ and /3 is a 
misspecification. To investigate the extent to which our characterization of the size 
and power of the orthogonality test carry over in this more general setting, we 
based Monte Carlo simulations on the AR(2) model 

dt+Jdt -- 1.03 + 0.18~/tdt 1 dt- - i  - 0.19d7_2 + ~t, (5.4) 

(V(~,) = 0.0149), which gives a more accurate characterization of US dividends 
than the more parsimonious geometric random walk [LeRoy & Parke, 1992, 
supplement]. Table 5 compares the size and power of the geometric random walk 
model on the left (this column coincides with Table 4, column 3) with the AR(2) 
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Table 5 
Size / power of tests; critical region based 
on to=5  

m Geometric  random walk AR(2)  

1 0.00 / 0.97 0.00 / 0.96 
2 0.00 / 0.98 0.00 / 0.98 
3 0.01 / 0.98 0.01 / 0.98 
4 0.03 / 0.98 0.03 / 0.96 
5 0.06 / 0.99 0.05 / 0.94 
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model on the right. As is evident, the size and power are not much affected by the 
geometric random walk misspecification if dividends are generated by the AR(2) 
model (5.4). 

One interpretation of these results is that the orthogonality test is robust, 
at least within the class of log-linear unit-root models. Another interpretation, 
however, is that the geometric random walk is a good approximation to less 
parsimonious dividend models; given that the AR(2) is close to the geometric 
random walk it is not surprising that size and power are nearly the same in the two 
cases. From this vantage, it would be observed that little can be concluded about 
robustness without considering dividend models less similar than our estimated 
AR(2) to the geometric random walk. 

In conclusion, the second of these results suggests that the orthogonality test 
is not critically sensitive to the geometric random walk assumption, contrary to 
what might have been expected. However, we again emphasize that we have not 
provided definitive evidence on this point. 

5.5. Robustness to autocorrelated noise process 

As noted above, we concentrated our attention on a white noise alternative in 
order to identify easily the regression test which is optimal against the alternative. 
However, the alternative hypothesis that is relevant empirically (at least on some 
accounts) incorporates highly autocorrelated noise rather than white noise. To 
evaluate the effect of noise autocorrelation on power, we recalculated power 
assuming that the noise is given by 

~! = P ~ t l  -~- (2t, (5 .5 )  

2 = 1 for each value of p. Table 6 shows that the with cr 2 adjusted so that o-,~ 
effect of noise autocorrelation on the power of both the bounds test and the 
model-based orthogonality test is negligible for low and moderate levels of noise: 
for p less than 0.9 the bounds test seldom rejects and the orthogonality test almost 
always rejects, as with white noise. However, when the noise process is almost a 
random walk, the noise increases the sample volatility of the test statistic: for p 
= 0.99 the test statistic lies in the rejection region with 39% probability (71%) 
for the bounds (orthogonality) test. Thus highly autocorrelated noise somewhat 
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Table 6 

Power under autocorrelated alternative; critical region 
m 5 

bascd on 

p Volatility tests Regression tests 

(1) (2) (3) (4) 
Model-based Model-based rt+l on rt rt+j on pt/dt 
bounds orthogonality 

0.0 0.04 0.99 0.40 0.06 
0.1 0.04 0.99 0.32 0.08 
0.2 0.04 0.99 0.25 0.10 
0.3 0.04 0.98 0.20 0.11 
0.4 0.04 0.96 0.15 0.12 
0.5 0.04 0.95 0.12 0.13 
0.6 0.05 0.93 0.10 0.13 
0.7 0.05 0.90 0.09 0.12 
0.8 0.08 0.87 0.08 0.11 
0.9 0.14 0.84 0.07 0.09 
0.95 0.24 0.80 0.07 0.08 
0.99 0.39 0.71 0.07 0.07 

improves the poor  performance of the bounds test, but  somewhat degrades the 

excellent performance  of the model-based orthogonali ty test. 
As expected, the power of the regression of rt+l on rt falls as p rises. For very 

high values of p the noise component  of rt+l is virtually equal to that  of rt, so 
the negative autocorrelat ion of rates of re turn associated with low values of p 
disappears. Also as expected, the regression of rt+l on p t /d t  gains power as p rises 
from low to modera te  values. 6 However, for all values of p the regression tests of 

the present  value model  remain greatly inferior to the model-based orthogonality 
test. 

6. Conclusion 

Both the model-free and model-based orthogonali ty tests are bet ter-behaved 
econometrical ly than the returns test that is optimal (among returns tests) against 
the al ternative we assumed. The model-free orthogonali ty test has somewhat 
higher power than the benchmark  returns test when size is held constant. Further,  

unlike the regression test the model-free orthogonali ty test is not  subject to 
the nuisance parameter  problem under  either the null  or the alternative. The 
model-based orthogonali ty test, in contrast, is subject to the nuisance parameter  
p roblem unde r  both  the null and the alternative. However, sampling variat ion is 
so low under  both  the null  and the alternative - -  but  particularly so under  the 

6 Campbell [1993] verified analytically that long-horizon return autoregressions are more pow- 
erful than short-horizon return autoregressions when the alternative is highly autocorrelated. 
Regressing rt+l on pt/dt is similar to a long-horizon return autoregression. 



Ch. 14. Volatility 431 

null - -  that the nuisance parameter problem does not distort the outcome: in 
assessing the presence or absence of noise, the critical region for the model-based 
orthogonality test can be set so that the test almost always returns the correct 
diagnosis. However, the model-based test requires the assumption that dividends 
follow a geometric random walk, so this verdict in favor of the model-based 
orthogonality test might require revision to the extent that that specification is 
incorrect. 

If the real-world data were generated by the alternative hypothesis assumed 
in our Monte Carlo runs - -  stock price equals the present value of expected 
dividends plus white noise, where dividends follow a geometric random walk - -  
with approximately the same parameter values, we would expect to find exactly the 
pattern observed with real-world data: failure to reject or marginal rejection with 
returns tests: stronger rejection with variance-bounds tests. These results support 
LeRoy & Porter and Shiller's original conjecture that tile differing outcomes of 
returns and variance-bounds tests reflect the greater power of the latter tests. 
There is nothing paradoxical about this: we argued above that different tests of 
the same null hypothesis will generally have different power against any particular 
alternative hypothesis, even if they use the same instruments. 

The difference in power may also be due to a difference in the auxiliary 
hypotheses assumed in constructing the test statistic. The volatility tests which we 
used made hard use of the assumption that V(p'[/dt), V(pt /d t )  and V(rt) are 
constant over time. This constancy property was assumed satisfied under both the 
null and alternative hypotheses which we specified. If we had specified either a null 
or an alternative hypothesis that failed to satisfy this property, it is unlikely that our 
results would have been as favorable to the volatility test as those reported here° 

There are other possible explanations for the fact that volatility tests show 
stronger rejection of the present-value model than returns tests. Model-based 
volatility tests can detect the present of rational speculative bubbles, whereas 
returns tests cannot since the latter do not impose a convergence condition. 
Therefore if stock prices have bubble components, rejection of the present-value 
model will be stronger under volatility tests than return tests, consistent with our 
stylized fact. 

We have dealt with the procedural question of the relative ability of different 
types of statistical tests to detect departures from the present-value model. We 
have not considered the substantive question of how to interpret rejection of 
the present-value model. LeRoy [1989] discussed this question but, again, not 
conclusively: no consensus exists as to whether statistical rejection of the presenb 
value model has implications for the broader question of capital market efficiency. 
A minimalist interpretation of the statistical rejection of the present-value model 
would emphasize that what is rejected is the assumption that discount rates are 
constant over time. However, nothing about capital market efficiency precludes 
time-varying discount rates. Also, it is known that small but highly autocorrelated 
departures from constant discount rates may be consistent with price volatility 
greatly in excess of that implied by the (constant discount rate version of the) 
present-value model. Therefore even highly excessive price volatility might give 
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rise to only marginal ly  profi table  t rading rules. Along  these  lines the in te rp re ta t ion  
of  the  va r iance-bounds  reject ions might  be  that  the  present -va lue  mode l  has only 
weak  impl ica t ions  for the uncondi t ional  var iance of  asset prices (except  in the 
restr ict ive cons tant  d iscount  ra te  case), not  that  ma rke t  efficiency is violated.  

Others ,  such as Shiller, have drawn more  sweeping conclusions from the excess 
volat i l i ty in f inancial  markets .  They poin t  out  that  models  with t ime-varying 
discount  rates p e r f o r m  little be t t e r  than the constant  d iscount  ra te  version in 
explaining rea l -wor ld  asset  price changes. Also,  they would  s i tuate  excess volati l i ty 
with the o ther  anomal ies  of  financial  markets ,  which collectively establish a s trong 
case against  ma rke t  efficiency even though individually these anomal ies  may be 
subject  to quest ion.  
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