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(Important contributors to this school of thought
include Butterworth, 1972; Feltham, 1972; ljiri, 1975;
Beaver, 1998; and Christensen and Demski, 2002.)

The advantage of this view is it forces us to think
in terms of complements and substitutes when dealing
with this vast array of sources, and to look for
economic forces that drive the disparity that bedevils
the measurement school. And it is here that the com-
parative advantage of the accounting channel comes
into focus: it is purposely designed and managed so that
it is difficult to manipulate (Ijiri, 1975). This is why
it often resorts to historical-cost measurement, as this
removes major elements of subjectivity and manipulation
potential. It is also why, in organized financial markets,
most valuation information arrives before the firm’s
financial reports; and in this sense the financial reports
provide a veracity check on the earlier reporting sources.
In addition, cost allocation now enters as a natural
phenomenon, either as a simple scaling device or — to
use an analogy with informationally efficient markets —
as a cousin to an information-based pricing kernel in
a financial market (Christensen and Demski, 2002;
Ross, 2004).

Libraries are organized in coordinated fashion, as are
phone books; and the same can be said about accounting.
A curiosity is the political side of the regulatory
apparatus. It is difficult, for example, for the incumbent
government to alter a government-provided statistical
series, yet it is routine for the incumbent government to
intervene in the accounting regulatory process. A second
curiosity is the seemingly episodic nature of financial
reporting frauds (Demski, 2003}, although at the micro
level it is well understood that opportunistic reportmg is
part of the game. For example, an ability to shift income
from a later to an earlier period may be an inexpensive
signal or, to speak more cynically, less costly to the firm
than shifting real resources.

The disadvantage of the information school is its sheer
breadth. The institutional context includes a vast array
of information sources and actors, and sorting out
first-order effects remains problematic.

Conclusion

Accounting, then, is simultaneously an important source
of economic data and a collection of institutional
regularities that provide research economists with yet
another venue for documentation and exploration of
economic forces. Why do we see episodic regulatory
interventions? Why do we see forecasts of forthcoming
accounting measures? Why do we not see supplementary
estimation of economic depreciation? Why do we see the
mix of historical-cost and market values that characterize
modern financial reporting? Questions of this sort
motivate much of the current research in accounting
and finance.

JOEL S. DEMSKI

See also assets and liabilities; capital measurement; cost
functions; depreciation; double-entry bookkeeping; human
capital; measurement; pensions; present value.
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adaptive estimation
An adaptive estimator is an efficient estimator for a
model that is only partially specified.

For example, consider estimating a parameter that
describes a sample of observations drawn from a distri-
bution F One natural question is: is it possible that an
estimator of the parameter constructed without knowl-
edge of F could be as efficient (asymptotically) as any
well-behaved estimator that relies on knowledge of F?
For some problems the answer is ‘yes) and the estimator
that is efficient is termed an adaptive estimator.

Consider the familiar scalar linear regression model
(in which we let ¢ rather than i index observations)

Y, =+ B X: +Us

where the regressor is exogenous and {U,} is a sequence of
n independent and identically distributed random vari-
ables with distribution E The parameter vector f =
(Bo, B, is often of interest rather than the distribution of
the error, F. If we assume that F is described by a param-
eter vector A (that is, we parameterize the distribution),
then the resultant (maximum likelihood or ML) estima-
tor of f§ is parametric. If we assume only that F belongs to
a family of distributions, then the resultant estimator of f8
is semiparametric. Because the OLS estimator does not
require that we parameterize F, the OLS estimator is
semiparametric. If the population error distribution is
Gaussian, we know that the OLS estimator is equivalent
to the ML estimator, and so is efficient. Although the OLS
estimator is generally inefficient if F is not Gaussian, it
may be possible to construct an alternative (semipara-
metric) estimator that retains asymptotic efficiency if F is
not Gaussian. If we find that, for a family of distributions
that includes the Gaussian, this estimator is asymptoti-
cally equivalent to the ML estimator, then this estimator is
adaptive for that family.

The question then is: how can we verify that an esti-
mator is adaptive? As there will generally be an arbitrarily
large number of distributions in the family, it is not fea-
sible to algebraically verify asymptotic equivalence for
each distribution. In a creative paper, Stein (1956) first
proposed a solution to this problem. Let {F;,4 € A}
define a subset of the family of distributions, each mem-
ber of which is parameterized by a value of A (each
member of this family must satisfy certain technical
conditions, such as absolute continuity, which will not be

explicitly defined). Although primary interest centers
on f, the full set of parameters includes 4. The infor-
mation matrix, evaluated at the population parameter
values, is

I I
T\ Fyp I )

where F g corresponds to the elements of f. Estimators
of B (again, the estimators must satisfy technical
conditions, such as /n consistency, which are also not
explicitly defined) w1ll have covariance matrix that is at
least as large as ###, which is the upper left component
of £71. If the partxal derivative of the log-likelihood with
respect to f§ (the score for ﬁ) is orthogonal to the score
for 4, then #g; =0 and S e Because #4p cor-
responds only to the parameter ﬂ/ the asymptotically
efficient estimator of f can be constructed without
knowledge of A. Stein argued that, if the condition Ip; =
0 holds for all the elements of {F,}, then f is adaptively
estimable.

While Stein’s condition has intuitive appeal, it is not
straightforward how to use the condition to define
estimators that are adaptive. In an invited lecture, Bickel
(1982) laid out a simpler condition that does yield a
straightforward link to the construction of adaptive
estimators. To understand the condition, let Er denote
expectation with respect to the population error distri-
bution and let Ez denote expectation with respect to an
arbitrary distribution F € &. Let I be the log-likelihood
for the regression model with data z = (y,x) and let
I(z, B, F) denote the score for fi, constructed from the
model in which F is the error distribution. A familiar
condition that arises in the context of likelihood estima-
tion is that the expected population score Eg[l(z, 8, F)]
equal 0. Bickel’s condition is simply that the population
score must have expectation zero over the entire family
&, that is, for any F € &,

Eg[i(z,8,P)] =

The two conditions are linked: if & is a convex family,
then Stein’s condition is implied by Bickel’s condition. In
detail, if # is a convex family, then F; = AF + (1 — A)F
with 1 an element of A = (0, 1). Bickel's condition then
arises from Stein’s condition by taking the limit as A — 0.
For the linear regression model, an adaptive estimator of
B exists for the family & that consists of all distributions
that are symmetric about the origin (and several other
technical conditions). If interest centres on the slope
coefficient alone, then one need not restrict attention to
distributions that are symmetric about the origin, as an
adaptive estimator of f§, can exist even if B, is not
identified.

Bickel’s score condition leads naturally to estimators
that contain nonparametric estimators of the distribution,
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E. In consequence, adaptive estimation requires a second
condition: the nonparametric estimator of the score
must converge in quadratic mean to the population
score. The resulting estimators of B are two-step
estimators. The estimators require, as the first step,
a y/n-consistent estimator such as the OLS estimator.
To understand the estimator’s form, note that, if the dis-
tribution were known, then the two-step (linearized
likelihood) estimator is

Bows +n! Z 5<Zn Bors: F))
t=]

with  s(Z;, Bors, F) = I (Bors, F)(Z:1, Bous, F).  The
linearized likelihood estimator is asymptotically efficient.
To form an adaptive estimator of f, we must replace F
with a nonparametric estimator E. If F is constructed so
that s(Z,, o5, F) converges in quadratic mean to
S(Zh ﬂOLS’F) then

-~ ~ n ~ PN
Bap = Bors +n7"! ZS(Zn ﬁowF)

t=1

is an adaptive estimator of § for the family #.

For the linear regression model, as for numerous
other models, nonparametric estimation of F entails
nonparametric estimation of the density f. One popular
nonparametric density estimator is the kernel estima-
tor, which is employed by Portnoy and Koenker (1989)
in their proof that semiparametric quantile estimators
are also adaptive for B. If {U,} denotes the OLS
residuals, then a kernel density estimator is defined
for all u in a small neighbourhood of each value of
U, as

fr(u) (n—1)" Zéu s»

s=1
s#1

where &, is a weight function that depends on the
smoothing parameter ¢. In Steigerwald (1992), &, cor-
responds to a Gaussian density with mean 0 and varlance
¢”. The variance controls the amount of smoothing; as a°

declines, the weight given to residuals that lie some dis-
tance from U, tends to zero. Of course, there are many
other ways to form the nonparametric score estimator.
Newey (1988) approximates the score by a series of
moment conditions, which arise from exogeneity of the
regressor and symmetry of F Faraway (1992) uses a
series of spline functions to approximate the score.
Chicken and Cai (2005) use wavelets to form the basis for
nonparametric estimation of f.

Recent results in adaptive estimation have focused
on problems in which the error distribution is known,
but other features are modelled nonparametrically.
Some of the most intriguing results concern the type of

stochastic differential equation often encountered in
financial models. The price of an asset that is measured
continuously over time, Py, is often modelled as

dPr = mtdt + Dtng.

The presence of standard Brownian motion, B, makes
the model of price a stochastic differential equation. The
function m, captures the deterministic movement or
drift while v, is the potentially time-varying scale of
the random component. Lepski and Spokoiny (1997)
study the model in which v, is constant and m, is
unknown. They establish that a nonparametric estimator
of m is pointwise adaptive. Yet an estimator that is
pointwise adaptive — that is, for a given point #, the
nonparametric estimator of m(t;) is asymptotically
efficient — may not perform well for all values within
the range of the function m. Such an idea is intuitive;
without knowledge of the smoothness of m, estimators
designed to be optimal for one value of ¢ may be very
different from optimal estimators for another value of ¢.
Cai and Low (2005) study efficient estimation of m
over neighbourhoods of t; and show that an estimator
constructed from wavelets is adaptive. The restriction
that the scale is constant is often difficult to support with
financial data. A more realistic model, which Mercurio
and Spokoiny (2004) study, models the asset return
as a stochastic differential equation with drift 0 and v,
varying over time. The time-varying scale is assumed
to be constant over (short) intervals of time, but is oth-
erwise unspecified. They construct a nonparametric esti-
mator of the volatility from a kernel that performs
local averaging and show that the resultant estimator is
adaptive.

DOUGLAS G. STEIGERWALD

See also efficiency bounds; partial linear model; semipara-
metric estimation.
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adaptive expectations
The adaptive expectations hypothesis may be stated most
succinctly in the form of the equation:

© .
E,x,_H = Z l(l - l)‘x'_i; 0<ixl

i=0
(1)

where E denotes an expectation, x is the variable whose
expectation is being calculated and ¢t indexes time. What
this says is that the expectation formed at the present
time, E, of some variable, x, at the next future date, t+ 1,
may be viewed as a weighted average of all previous
values of the variable, x,_; where the weights, 4 (1 - 1),
decline geometrically. The weight attaching to the most
recent, or current, observation is A The above equation
can be manipulated readily to deliver:

Expp1 = E1x + 'l(xt - Er—lxt)- (2)

What this equation says is that, viewed from time ¢,
the expected value of the variable, x at t+1, is equal to the
value which, at time t—1 was expected for ¢, plus an
adjustment for the extent to which the variable turned
out to be different at ¢ from the value which, viewed
from date t — 1, had been expected. The change in the
expectation is simply the fraction 4 multiplied by the
most recently observed forecast error. In this formula-
tion, the adaptive expectations hypothesis is sometimes
called the error learning hypothesis (see Mincer, 1969,
pp- 83-90).

The adaptive expectations hypothesis was first used,
though not by name, in the work of Irving Fisher (1911).
The hypothesis received its major impetus, however, as a
result of Phillip Cagan’s (1956) work on hyperinflations.
The hypothesis was used extensively in the late 1950s and
1960s in a variety of applications. L.M. Koyck (1954)
used the hypothesis, though not in name, to study
investment behaviour. Milton Friedman (1957), used it
as a way of generating permanent income in his study of
the consumption function. Marc Nerlove (1958) used it

in his analysis of the dynamics of supply in the agricul-
tural sector. Work on inflation and macro-economics in
the 1960s was dominated by the use of this hypothesis.
The most comprehensive survey of that work is provided
by David Laidler and Michael Parkin (1975).

The adaptive expectations (or error learning) hypoth-
esis became popular and was barely challenged from the
middle-1950s through the late-1960s. It was not entirely
unchallenged but it remained the only extensively-used
proposition concerning the formation of expectations
of inflation and a large number of other variables for
something close to two decades. In the 1970s the hypoth-
esis fell into disfavour and the rational expectations
hypothesis became dominant.

The adaptive expectations hypothesis became and
remained popular for so long for three reasons. First, in
its error learning form it had the appearance of being
an application of classical statistical inference. It looked
like classical updating of an expectation based on new
information.

Second, the adaptive expectations hypothesis was
empirically easy to employ. Koyck (1954) showed how
a simple transformation of an equation with an unob-
servable expectation variable in it could be rendered
observable by performing what became a famous trans-
formation bearing Koyck’s name. If some variable, y, is
determined by the expected future value of x, that is:

¥ = o+ BExpy (3)

where a and f are constants, then we can obtain an esti-
mate of « and f by using a regression model in which
equation (1) [or equivalently (2)] is used to eliminate the
unobservable expected future value of x. To do this,
substitute (1) into (3). Then write down an equation
identical to (3) but for one period earlier. Multiply that
second equation by 1—A and subtract the result from (3)
(Koyck, 1954, p. 22), to give:

y,=0t/1+ﬂ).x,+(l—l)y,_1 (4)

An equation like this may be used to estimate not only
the desired values of o and f but also the value of A, the
coefficient of expectations adjustment. Thus, economists
seemed to have a very powerful way of modelling situ-
ations in which unobservable expectational variables
were important and of discovering speeds of response
both of expectations to past events and of current events
to expectations of future events.

Third, the adaptive expectations hypothesis seemed to
work. That is, when equations like (4) were estimated in
the wide variety of situations in which the hypothesis
was applied (see above), ‘sensible’ parameter values for «,
B, A were obtained and, in general, a high degree of
explanatory power resulted.

If the adaptive expectations hypothesis was so intui-
tively appealing, easy to employ, and successful, why was
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