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Adaptive estimation arises in the context of partially specified models. Par-
tially specified models occur with some frequency in econometrics. For ex-
ample, a linear regression model in which the error distribution is unknown
is a partially specified model. So too are many of the diffusion models em-
ployed in empirical finance. One active research area is to understand the
conditions under which the lack of full specification does not affect the
asymptotic efficiency of the estimator, in which case the estimator is termed
‘adaptive’.

An adaptive estimator is an efficient estimator for a model that is only
partially specified.

For example, consider estimating a parameter that describes a sample of
observations drawn from a distribution F. One natural question is: is it
possible that an estimator of the parameter constructed without knowledge
of F could be as efficient (asymptotically) as any well-behaved estimator that
relies on knowledge of F? For some problems the answer is ‘yes’, and the
estimator that is efficient is termed an adaptive estimator.

Consider the familiar scalar linear regression model (in which we let t
rather than i index observations)

Yt ¼ b0 þ b1Xt þUt,

where the regressor is exogenous and {Ut} is a sequence of n independent and
identically distributed random variables with distribution F. The parameter
vector b ¼ ðb0;b1Þ

0 is often of interest rather than the distribution of the
error, F. If we assume that F is described by a parameter vector l (that is, we
parameterize the distribution), then the resultant (maximum likelihood or
ML) estimator of b is parametric. If we assume only that F belongs to a
family of distributions, then the resultant estimator of b is semiparametric.
Because the OLS estimator does not require that we parameterize F, the OLS
estimator is semiparametric. If the population error distribution is Gaussian,
we know that the OLS estimator is equivalent to the ML estimator, and so is
efficient. Although the OLS estimator is generally inefficient if F is not
Gaussian, it may be possible to construct an alternative (semiparametric)
estimator that retains asymptotic efficiency if F is not Gaussian. If we find
that, for a family of distributions that includes the Gaussian, this estimator is
asymptotically equivalent to the ML estimator, then this estimator is adap-
tive for that family.

The question then is: how can we verify that an estimator is adaptive? As
there will generally be an arbitrarily large number of distributions in the
family, it is not feasible to algebraically verify asymptotic equivalence for
each distribution. In a creative paper, Stein (1956) first proposed a solution
to this problem. Let Fl; l 2 Lf g define a subset of the family of distributions,
each member of which is parameterized by a value of l (each member of this
family must satisfy certain technical conditions, such as absolute continuity,
which will not be explicitly defined). Although primary interest centers on b,
the full set of parameters includes l. The information matrix, evaluated at
the population parameter values, is

I ¼
Ibb Ibl
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where Ibb corresponds to the elements of b. Estimators of b (again, the



estimators must satisfy technical conditions, such as
ffiffiffi
n

p
consistency, which

are also not explicitly defined) will have covariance matrix that is at least as
large as Ibb, which is the upper left component of I�1. If the partial de-
rivative of the log-likelihood with respect to b (the score for b) is orthogonal
to the score for l, then Ibl ¼ 0 and Ibb ¼ I�1

bb . Because Ibb corresponds
only to the parameter b, the asymptotically efficient estimator of b can be
constructed without knowledge of l. Stein argued that, if the condition Ibl ¼
0 holds for all the elements of Flf g, then b is adaptively estimable.

While Stein’s condition has intuitive appeal, it is not straightforward how
to use the condition to define estimators that are adaptive. In an invited
lecture, Bickel (1982) laid out a simpler condition that does yield a straight-
forward link to the construction of adaptive estimators. To understand the
condition, let EF denote expectation with respect to the population error
distribution and let E ~F denote expectation with respect to an arbitrary dis-
tribution ~F 2 F. Let l be the log-likelihood for the regression model with
data z ¼ ðy;xÞ and let _lðz;b;FÞ denote the score for b, constructed from the
model in which F is the error distribution. A familiar condition that arises in
the context of likelihood estimation is that the expected population score
EF

_lðz;b;FÞ
� �

equal 0. Bickel’s condition is simply that the population score
must have expectation zero over the entire family F, that is, for any ~F 2 F,

E ~F
_lðz;b;FÞ
� �

¼ 0.

The two conditions are linked: if F is a convex family, then Stein’s condition
is implied by Bickel’s condition. In detail, if F is a convex family, then
Fl ¼ lF þ ð1� lÞ ~F with L ¼ ð0; 1Þ. Bickel’s condition then arises from
Stein’s condition by taking the limit as l ! 0. For the linear regression
model, an adaptive estimator of b exists for the family F that consists of all
distributions that are symmetric about the origin (and several other technical
conditions). If interest centres on the slope coefficient alone, then one need
not restrict attention to distributions that are symmetric about the origin, as
an adaptive estimator of b1 can exist even if b0 is not identified.

Bickel’s score condition leads naturally to estimators that contain non-
parametric estimators of the distribution, F̂ . In consequence, adaptive es-
timation requires a second condition: the nonparametric estimator of the
score must converge in quadratic mean to the population score. The resulting
estimators of b are two-step estimators. The estimators require, as the first
step, a

ffiffiffi
n

p
-consistent estimator such as the OLS estimator. To understand

the estimator’s form, note that, if the distribution were known, then the two-
step (linearized likelihood) estimator is

b̂OLS þ n�1
Xn
t¼1

s Zt; b̂OLS;F
� �

,

with s Zt; b̂OLS;F
� �

¼ I11 b̂OLS;F
� �

_l Zt; b̂OLS;F
� �

. The linearized likeli-
hood estimator is asymptotically efficient. To form an adaptive estimator
of b, we must replace F with a nonparametric estimator F̂ . If F̂ is constructed
so that s Zt; b̂OLS; F̂

� �
converges in quadratic mean to s Zt; b̂OLS;F

� �
, then

b̂AD ¼ b̂OLS þ n�1
Xn
t¼1

s Zt; b̂OLS; F̂
� �

is an adaptive estimator of b for the family F.
For the linear regression model, as for numerous other models, nonpar-

ametric estimation of F entails nonparametric estimation of the density f.
One popular nonparametric density estimator is the kernel estimator, which
is employed by Portnoy and Koenker (1989) in their proof that semipar-
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ametric quantile estimators are also adaptive for b. If Ût

� �
denotes the OLS

residuals, then a kernel density estimator is defined for all u in a small
neighbourhood of each value of Ût as

f̂ tðuÞ ¼ ðn� 1Þ�1
Xn
s¼1
sat

xs u� Ûs

� 	
,

where xs is a weight function that depends on the smoothing parameter s. In
Steigerwald (1992), xs corresponds to a Gaussian density with mean 0 and
variance s2. The variance controls the amount of smoothing; as s2 declines
the weight given to residuals that lie some distance from Ût tends to zero. Of
course, there are many other ways to form the nonparametric score estima-
tor. Newey (1988) approximates the score by a series of moment conditions,
which arise from exogeneity of the regressor and symmetry of F. Faraway
(1992) uses a series of spline functions to approximate the score. Chicken and
Cai (2005) use wavelets to form the basis for nonparametric estimation of f.

Recent results in adaptive estimation have focused on problems in which
the error distribution is known, but other features are modelled nonpara-
metrically. Some of the most intriguing results concern the type of stochastic
differential equation often encountered in financial models. The price of an
asset that is measured continuously over time, Pt, is often modelled as

dPt ¼ mtdtþ utdBt.

The presence of standard Brownian motion, Bt, makes the model of price a
stochastic differential equation. The function mt captures the deterministic
movement or drift while ut is the potentially time-varying scale of the random
component. Lepski and Spokoiny (1997) study the model in which ut is
constant and mt is unknown. They establish that a nonparametric estimator
of m is pointwise adaptive. Yet an estimator that is pointwise adaptive – that
is, for a given point t0 the nonparametric estimator of m(t0) is asymptotically
efficient – may not perform well for all values within the range of the func-
tion m. Such an idea is intuitive; without knowledge of the smoothness of m,
estimators designed to be optimal for one value of t may be very different
from optimal estimators for another value of t. Cai and Low (2005) study
efficient estimation of m over neighbourhoods of t0 and show that an es-
timator constructed from wavelets is adaptive. The restriction that the scale
is constant is often difficult to support with financial data. A more realistic
model, which Mercurio and Spokoiny (2004) study, models the asset return
as a stochastic differential equation with drift 0 and nt varying over time. The
time-varying scale is assumed to be constant over (short) intervals of time,
but is otherwise unspecified. They construct a nonparametric estimator of the
volatility from a kernel that performs local averaging and show that the
resultant estimator is adaptive.

Douglas G. Steigerwald

See also

<xref=E000251> efficiency bounds;
<xref=xyyyyyy> partial linear models;
<xref=xyyyyyy> semiparametric estimation.
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