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Abstract

We exploit the aggregative structure of the public good
model to provide a simple analysis of the voluntary con-
tribution game. In contrast to the best response function
approach, ours avoids the proliferation of dimensions as
the number of players is increased, and can readily analyze
games involving many heterogeneous players. We demon-
strate the approach at work on the standard pure public
good model and show how it can analyze extensions of the
basic model.

1. Introduction

The voluntary contribution model of pure public good provision has long
been a favorite topic for students of public economics. Economists use it
routinely to examine the inefficiency of decentralized resource allocation
processes in the presence of externalities and to explore the properties of
alternative mechanisms. Yet many existing analyses do not fully exploit its
simplicity. The present paper develops an alternative way of analyzing the
model that exploits its aggregative nature—that is, the fact that individuals
care about, not an arbitrary vector of individual contributions, but a very
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specific aggregate, their unweighted sum. This feature has, of course, been
noted by others—for example, Danziger (1976), Okuguchi (1993), Corchon
(1994), and Cornes, Hartley, and Sandler (1999) have, to varying extents,
sought to exploit it. The present paper develops the approach exploited by
Cornes, Hartley, and Sandler, both simplifying it and also extending it to
analyze comparative static questions.

Our approach has several virtues. It yields a unified analysis of existence,
uniqueness and comparative static properties of the voluntary contribution
model without requiring the use of fixed point or other theorems in high—
dimensional spaces. Second, it also suggests a transparent geometric repre-
sentation. A third and, in our view, decisive virtue of the approach is its power
as a tool for the analysis of issues that are widely perceived to be not only the-
oretically interesting but also empirically significant. For example, the recent
literature on “Global Public Goods” stresses the importance of productivity
differences between countries as generators of global public goods—see, in
particular, Arce and Sandler (1999), Sandler (1997), and the papers in Kaul
et al. (1999, 2003). Yet the best response function method of analysis struggles
to cope with such an extension of the basic model in settings that involve more
than two players. Consequently, existing analyses—of which Ihori (1996) is a
notable example—typically confine themselves to two-player games. By con-
trast, productivity differences across many potential contributors create no
problems for the present approach. Finally, the public good game is only one
of many with aggregative structure—other applications include oligopoly,
contests, open access resource exploitation, and cost and surplus sharing
models.

2. The Pure Public Good Model

2.1. Assumptions of the Model

There are n players. Player i’s preferences are represented by the utility
function

ui = ui (yi , Q), (1)

where yi is the quantity of a private good and Q is the total quantity of a pure
public good. We impose the following assumptions.

A1. Well-behaved preferences: For all i, the function ui(·) is everywhere strictly
increasing and strictly quasiconcave in both arguments. It is also everywhere
continuous.1

A2. Linear individual budget constraints: Player i’s budget constraint requires
that

1Note that we dispense with the usual assumption of differentiability of the utility function.
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yi + ci qi � mi , (2)

where qi � 0 is her contribution to a pure public good. The unit cost c i and
income mi are strictly positive and exogenous.

A3. Additive social composition function: The total supply of the public good is
the sum of all individual contributions:

Q =
n∑

j=1

q j = qi + Q−i , (3)

where Q −i is the sum of the contributions made by all players except i.

Remark 1: The possibility of differing unit costs across players represents a
significant extension of the basic pure public good model as set out in, say,
Cornes and Sandler (1985) and Bergstrom, Blume, and Varian (1986).
Our analysis shows that this extension neither complicates analysis nor
threatens existence of a unique equilibrium. However, it has interesting
comparative static implications.

The budget constraint (2) may be written so as to incorporate the contri-
butions of others explicitly as a component of player i’s income endowment.
Add the quantity Q −i to both sides. This yields

yi + ci Q � mi + ci Q−i . (4)

This requires that the value of the bundle consumed by i cannot exceed
that of her endowment point. This is her “full income,” Mi ≡ mi + ciQ −i .
Furthermore, she is restricted to allocations consistent with the condition
that yi � mi , reflecting the assumption that she cannot undo the contribu-
tions of others and transform them into units of the private consumption
good.

Player i chooses nonnegative values of yi and qi to maximize utility subject
to her budget constraint and the prevailing value of Q −i . To any nonnega-
tive value of Q −i , there corresponds a unique utility-maximizing contribu-
tion level, q̂i . By varying Q −i parametrically, we generate her best response
function, q̂i = bi (Q−i ). At a Nash equilibrium, every player’s choice is a best
response to the prevailing choices of all other players.

Figure 1 depicts an individual’s preferences and constraint set. The val-
ues of Q −i and mi fix the endowment point E, and the constraint set is the
area ODEF, where the slope of EF is −c i , reflecting the marginal rate of trans-
formation between qi and yi . Strict quasiconcavity of ui(·) implies a unique
utility-maximizing response, shown as the point of support T . The figure also
shows the locus of such points traced out for a given value of mi as Q −i varies
parametrically. The figure shows this locus to be everywhere upward-sloping.
This reflects the following assumption that we impose on preferences:
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Figure 1: Player i ’s preferences and constraint set

A4. Normality: For every player i, both the private good and the public good
are normal. That is, the locus of values of yi and Q consistent with a given
marginal rate of substitution has positive finite slope everywhere.

2.2. The Replacement Function

2.2.1. The Individual Replacement Function
Define player i’s demand function for the public good as Di(Mi , c i). Since
c i is being held constant, we can focus on the role of income and write her
demand as ξ i (Mi). This defines her Engel curve. Normality implies that ξ i is
increasing in Mi . Thus its inverse, ξ−1

i (Q), is well defined on the range of ξ i .
We must respect the fact that the player cannot undo the contributions

of others and enjoy a public good quantity that falls short of the total contri-
butions of others. Define the following sets:

Ai = {Q−i | ξi (mi + ci Q−i ) − Q−i ≥ 0}
Bi = {Q−i | ξi (mi + ci Q−i ) − Q−i < 0}.

Normality implies that ξ i (mi + ciQ −i ) − Q −i is a decreasing function of
Q −i for all Q −i > 0. Therefore the sets Ai and Bi are intervals on the real line
of the form [0, Q̄i ] and (Q̄i , ∞), respectively. Our assumptions do not rule
out the possibility that Q̄i = ∞.
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We now define the function ri(Q , mi , c i) as follows. If Q −i ∈ Bi , then
ri (Q , mi , ci ) = 0. If Q −i ∈ Ai , then ri (Q , mi , ci ) = r̂ i , where r̂ i is the unique
solution to the equation Q = ξi [mi + ci (Q − r̂ i )]. Taking the inverse of ξ i ,
and rearranging terms, we find that if Q −i ∈ Ai ,

ri (Q , mi , ci ) = mi − ξ−1
i (Q)

ci
+ Q . (5)

We need to check that the function ri(Q , mi , c i) is well defined and con-
tinuous in Q , and we will show that it is monotone decreasing if Q −i ∈ Ai .
Define the function �i (ri ) ≡ ξi [mi + ci (Q − ri )] − Q . For Q ∈ Ai , �i (0) =
ξi [mi + ci (Q)] − Q ≥ 0 and �i (Q + mi/ci ) = ξi [0] − Q ≤ 0. Since ξ i is a
continuous increasing function, �i is a continuous decreasing function.
Hence there is precisely one solution for the equation, �i (r̂ i ) = 0. This
justifies our claim above that r̂ i is the unique solution to the equation
Q = ξi [mi + ci (Q − r̂ i )]. Continuity of ri when Q −i is in the interior of Ai

follows from the assumed continuity of the Engel curve. Furthermore, in
the case where Q̄i is finite, it follows from the continuity of the function
ξi [mi + ci Q] − Q and the definition of Ai that ξi [mi + ci Q̄i ] − Q̄i = 0. Hence
ri (Q , mi , ci ) is continuous at Q = Q̄i . Finally, normality of the private good
implies that �i falls as Q increases, and hence that ri(Q , mi , c i) is decreasing
in Q .

DEFINITION 1: The function

ri (Q , mi , ci ) ≡ max

{
mi − ξ−1

i (Q)

ci
+ Q , 0

}

is player i’s replacement function.

Remark 2: We call ri(Q , mi , c i) player i’s replacement function for the fol-
lowing reason. Consider any Q in the domain for which ri(·) is defined.
Then there is a unique quantity Z ∈ [0, Q] such that, if the amount Z
were subtracted from the quantity Q , the player’s best response to the
remaining quantity would exactly replace the quantity removed, and Z =
ri(Q).

Denote by Q
¯

i
the quantity that is player i’s best response when all other

players’ contributions are zero. At such an allocation, player i’s contribution
is the total provision level: ri (Q

¯
i
, mi , ci ) = Q

¯
i
. Note that Q −i ∈ Ai is equivalent

to Q ∈ [Q
¯

i
, Q̄i ].

The following proposition summarizes the significant properties of the
function ri(Q , mi , c i).
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PROPOSITION 2.1: If assumptions A1, A2, A3, and A4 hold, player i has a
replacement function ri(Q , mi , c i) with the following properties:

1. There exists a finite value, Q
¯

i
, at which ri (Q

¯
i
, mi , ci ) = Q

¯
i
.

2. ri(Q , mi , c i) is defined for all Q � Q
¯

i
.

3. ri(Q , mi , c i) is continuous.

4. ri(Q , mi , c i) is everywhere nonincreasing in Q , and is strictly decreasing
wherever it is strictly positive.

Remark 3: We call the value Q
¯

i
player i’s standalone value. It is the level of the

public good that player i would contribute if she were the sole contributor.

2.2.2. The Aggregate Replacement Function
We now define the aggregate replacement function of the game, R(Q).

DEFINITION 2: The aggregate replacement function of the game R(Q , m, c) is defined
as

R(Q , m, c) =
n∑

j=1

r j (Q , m j , c j ),

where m ≡ (m1, m2, . . . , mn) and c ≡ (c1, c2, . . . , cn).

The properties of the individual replacement functions are either pre-
served or else are modified in very slight and straightforward ways by the op-
eration of addition. The following proposition summarizes the salient prop-
erties of R(·). All play a role in subsequent analysis.

PROPOSITION 2.2: If assumptions A1–A4 hold for all i, there is an aggregate
replacement function, R(·) ≡ ∑

j r j (·), with the following properties:

1. R(max{Q
¯

1
, Q

¯
2
, . . . , Q

¯
n
}, m, c) � max{Q

¯
1
, Q

¯
2
, . . . , Q

¯
n
}.

2. R(Q , m, c) is defined for all Q � max{Q
¯

1
, Q

¯
2
, . . . , Q

¯
n
}.

3. R(Q , m, c) is continuous.

4. R(Q , m, c) is everywhere nonincreasing in Q, and is strictly decreasing wher-
ever it is strictly positive.

Use of R(·) suggests a simple way of describing Nash equilibrium. A Nash
equilibrium is an allocation at which every player is choosing her best response
to the choices made by all other players. Clearly, the Nash equilibrium level
of total provision, Q N , must equal the sum of all best responses associated
with the equilibrium allocation:

q̂1 + q̂2 + · · · + q̂n = Q N .
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We have just shown that each best response may be described by that player’s
replacement function. A Nash equilibrium, therefore, may be characterized
in the following way.

Characterization of Nash equilibrium: A Nash equilibrium is a strategy profile q̂
such that

q̂ j = r j (Q N , m j , c j ), for j = 1, 2, . . . , n, where Q N =
n∑

j=1

q̂ j .

Remark 4: Note that Q N is an equilibrium level of total provision of the public
good if and only if R(Q N , m, c) = Q N . Once Q N is known, individual
choices can be read off using the replacement functions.

Remark 5: This characterization does not require a proliferation of dimen-
sions as the number of players increases. One simply adds functions, each
defined on an interval of the real line.

3. Nash Equilibrium: Existence and Uniqueness

Recall that a Nash equilibrium is an allocation at which R(Q , m, c) = Q .
Referring back to Proposition 2.2, Property 1 locates a value in the domain
of R(·) for which R(·) � Q . Property 2 identifies the domain on which R(·)
is defined. Properties 3 and 4 guarantee the existence of a unique value, Q ∗,
at which R(Q ∗, m, c) = Q ∗. We can immediately infer the following.

PROPOSITION 3.1: There exists a unique Nash equilibrium in the pure public
good game.

Example 1: Suppose that player i has the Cobb–Douglas utility function ui =
α i lnyi + (1 − α i ) lnQ and money income mi . Then, working through the
standard first-order conditions for utility maximization, we get ξi (M) =
1 − αi

c i
Mi and, therefore, ξ−1

i (Q) = ci Q
1 − αi

. Thus i’s replacement function is

ri (Q) = Max

{
mi − ξ−1

i (Q)

ci
+ Q , 0

}
= Max

{
mi

ci
− αi Q

1 − αi
, 0

}
.

In an economy of such individuals, the Nash equilibrium is found by
solving ∑

i∈C

mi

ci
− αi Q

1 − αi
= Q ,

where C is the set of positive contributors at the equilibrium.

Figure 2 depicts the equilibrium in such an economy consisting of four
individuals, under the assumptions that, for all i, αi = 1

2
and c i = 1. The
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Figure 2: Individual and aggregate replacement functions

initial incomes are (m1, m2, m3, m4) = (14, 10, 8, 6). The Nash equilibrium
is the unique point of intersection between the graph of R(Q) and the
ray through the origin O with slope 1. At the equilibrium, two of the four
players are positive contributors: Q N = 8 and (r 1, r 2, r 3, r 4) = (6, 2, 0,
0). Note that existence and uniqueness are effectively established by a sin-
gle line of argument that exploits the continuity and monotonicity of the
graph of R(Q). Furthermore, differences across players with respect to pref-
erences, income levels, and unit costs in no way complicate the analysis or its
exposition.

4. Nash Equilibrium: Comparative Static Properties

We now analyze equilibrium responses to exogenous changes in players’ in-
comes or unit cost levels. We model the effect of such shocks on equilibrium
by first considering how they shift the graphs of individual replacement func-
tions, and therefore the graph of R(Q). The equilibrium value of Q rises,
remains unchanged, or falls according to whether, at its initial equilibrium
value, the aggregate replacement value rises, remains unchanged, or falls.
The present approach allows us to consider finite shocks.
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4.1. Comparative Statics of a Player’s Replacement Function

4.1.1. Corner Solutions
Figure 2 depicts an example in which every player’s replacement function falls
to zero at some finite value of Q . Our assumptions up to this point do not
necessarily imply that replacement functions have this property. Denote by
ψ i (Q , c i) the function that uniquely determines individual i’s most preferred
level of private good consumption as a function of Q and c i . Assumptions A1–
A4 are consistent with the possibility that, as Q increases, the value of ψ i (·)
asymptotically approaches some value ȳi < mi . Her replacement function
then does not fall to zero, but converges to some positive value as Q increases.

We have not committed ourselves on whether or not there is a finite
value of Q at which ri(Q) = 0 simply because our analysis is not at all com-
plicated, and our conclusions concerning existence and uniqueness are not
affected, by our answer to this question. However, the existing literature typ-
ically assumes—sometimes explicitly, sometimes not—the existence of such
a value. In what follows, we adopt the following slightly stronger normality
assumption.2

A4∗. Bounded normality: For every player i, there is a finite value of Q , Q̄i ,
such that ψi (Q̄i , ci ) = mi .

We will call the quantity Q̄i player i’s dropout value, since it is the value of
total provision above which she drops out of the set of positive contributors:
ri(Q , mi , c i) = 0 for all Q � Q̄i . Let the equilibrium level of aggregate provision
be Q N . Then any player whose dropout value falls short of Q N will be a
noncontributor at that equilibrium.3

4.2. Comparative Statics of Equilibrium Provision

Our comparative static properties are all consequences of the following three
relationships, each of which has been shown above to hold at any allocation
at which player i is choosing her best response to the contributions of others:

ŷi = min{ψi (Q , ci ), mi }, (6)

q̂i = ri (Q , mi , ci ) = mi − ŷi

c i
= max

{
mi − ψi (Q , ci )

ci
, 0

}
, (7)

and

ui ( ŷi , Q) = ui (min{ψi (Q , ci ), mi }, Q). (8)

2Andreoni (1988) makes an assumption that has essentially the same implication as A4∗.
3Andreoni and McGuire (1993) note the significance of players’ dropout values in deter-
mining who are in the set of positive contributors at a given equilibrium. More recently,
McGuire and coauthors have exploited this magnitude in further exploration of the char-
acteristics of equilibrium—see McGuire and Groth (1985) and McGuire and Shrestha
(2003).
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Before considering the effects of parametric changes in incomes and unit
costs on equilibrium, we note two direct implications of these relationships.

PROPOSITION 4.1: Let players i and j be positive contributors in equilibrium.
Suppose further that they have identical preferences and identical unit cost coefficients.
Then their equilibrium consumption bundles and utility are identical, even if their
incomes differ .

If player i is a positive contributor, then ψ i (Q , c i) < mi . Then equation
(6) implies that ŷi = ψi (Q , ci ) and equation (8) implies equality of utilities.
In short, a higher income contributor is no better off than an otherwise
identical lower income contributor. Of course, income helps to determine
whether a player contributes. But the fates of contributors are tied together
independent of their incomes.

PROPOSITION 4.2: Let players i and j be positive contributors in equilibrium.
Suppose further that they have identical preferences, but differ with respect to their unit
costs. Then at equilibrium,

ci > c j =⇒ u( ŷi , Q) > u( ŷ j , Q).

Proof: Let c i > c j . At any given level of public good provision Q ∗, ψ(Q ∗, ci ) >

ψ(Q ∗, c j ). Therefore, if both contribute, player i enjoys the higher level
of private good consumption. Both enjoy the same level of public good
provision, Q N . Therefore, at the Nash equilibrium,

u
(
ψ

(
Q N , ci

)
, Q N )

> u
(
ψ

(
Q N , c j

)
, Q N )

. �

In short, higher cost contributors are better off than otherwise identical
lower cost contributors.4 It does not pay to have a comparative advantage as
a producer of the public good. As with Proposition 4.1, incomes matter only
insofar as they determine whether or not a player is a positive contributor.

4.3. Comparative Statics of Income Changes

4.3.1. Income Changes with Idiosyncratic Unit Costs
Let C denote the set of positive contributors at a Nash equilibrium. Consider
the equilibrium response by contributor i to a change in her income. The
following proposition follows immediately from Equation (7).

4In a model in which the contributors to a public good are interpreted as countries, Boadway
and Hayashi (1999) argue that more populous countries are worse off than less populous
countries. Their mechanism works through the implications of population size for per
capita cost of the public good.



Aggregative Public Good Games 211

PROPOSITION 4.3: Let player i be a positive contributor both before and after an
exogenous change in money income from m0

i to m1
i . Then, at unchanged Q̃ , the change

in her replacement value is

ri
(
Q̃ , m1

i

) − ri
(
Q̃ , m0

i

) = m1
i − m0

i

c i
.

Starting at a Nash equilibrium, consider the effect on equilibrium of
income redistribution among contributors. Assume that the set of positive
contributors is not changed by the redistribution. At the initial equilibrium
provision level, Q ∗, the value of the aggregate replacement function rises,
stays unchanged, or falls according to whether∑

j∈C

(
m1

j − m0
j

)
c j

>, =, or < 0.

For a given set of incomes, the aggregate replacement function is nonincreas-
ing in Q . Therefore the following corollary of Proposition 4.3 holds.

COROLLARY 4.1: Consider a set of changes in the incomes of contributors. If the
set of positive contributors is unchanged, then aggregate equilibrium provision rises,

remains unchanged or falls according to whether
∑

j∈C
(m1

j − m0
j )

c j
>, =, or <0.

For example, a transfer from Contributor A to Contributor B increases
equilibrium provision if cA > cB . Redistribution from a higher to a lower
cost contributor enhances efficiency, and the efficiency gain is partly taken
through an increase in the provision of the public good.

Not only does such a redistribution increase equilibrium public good
provision—it is also Pareto improving.5 The reasoning is simple. Each in-
dividual’s preference map in (y , Q) space is fixed throughout the present
thought experiment. Under the normality assumption, if each individual is
enjoying a higher level of total public good provision after the redistribution,
she must have moved upwards and to the right along her income expansion
path. Hence, her consumption of the private good is higher, and so must be
her utility. In short,

COROLLARY 4.2: If changes in contributors’ incomes leave the set of positive con-
tributors unchanged, the new equilibrium is Pareto superior to, identical with, or Pareto

inferior to the initial equilibrium according to whether
∑

j∈C
(m1

j −m0
j )

c j
>, =, or <0.

5Within the context of a two-player model, Buchholz and Konrad (1995) note that transfers
between contributors with different productivities may benefit the donor. They also explore
the incentive this provides for individuals to make transfers prior to playing the contribution
game. Buchholz, Konrad, and Lommerud (1997) further explore two-stage contribution
games involving two players. Both analyses exploit the aggregative nature of the public
good model.
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The following implication of differences in the unit cost of public good
provision across contributors is worth noting. A redistribution may lead to a
Pareto improving increase in public good provision even though it reduces
the aggregate income of contributors. This follows from the simple observa-
tion that the inequalities

∑
j∈C (m1

j − m0
j ) < 0 (a reduction in the aggregate

income of contributors) and
∑

j∈C
(m1

j − m0
j )

c j
> 0 (a Pareto improving change

in contributors’ incomes) are perfectly consistent with one another if unit
costs vary across individuals. Conversely, of course, an increase in the aggre-
gate income of contributors is consistent with a reduction in the equilibrium
level of provision.

4.3.2. Income Changes with Common Unit Costs
Consider the standard model of public good provision with common unit
costs across contributors—let c i = c j ∀i , j ∈ C . Then the well-known neutrality
property follows as a direct corollary of Proposition 4.3.

COROLLARY 4.3: Assume that ci = c j ∀i , j ∈ C . Then a pure redistribution of in-
come among contributors—that is, a set of transfers such that

∑
j∈C m1

j = ∑
j∈C m0

j —
that leaves the set of positive contributors unchanged has no effect on the equilibrium
allocation.

The neutrality property implies that, in a well-defined sense, the set of
positive contributors who face the same unit cost of public good provision
behaves like a single individual. If attention is confined to income distribu-
tions that are consistent with a given set of positive contributors, then the
aggregate replacement function associated with that set depends upon just
two arguments: the total income of all contributors, and the value of Q .

COROLLARY 4.4: For all income distributions consistent with a given set C of players
being the positive contributors to the public good in equilibrium, R(·) = R(Q , MC ),
where MC = ∑

j∈C m j .

Consider the response of total equilibrium public good provision to a
change in the total income received by the set of contributors. We assume
throughout that the set of contributors is unchanged. At a Nash equilibrium,

R(Q N ) =
∑
j∈C

r j
(
Q N , m j

) = Q N . (9)

Now suppose that the contributors’ income levels change. At the new equi-
librium, it remains the case that the sum of replacement values equals the
total provision. Differentiating Equation (9),∑

j∈C

r jQ (·)dQ N +
∑
j∈C

r jm(·)dm j = dQ N . (10)
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We have already shown that rjm(·) = 1, for all j ∈ C . Writing MC ≡ ∑
j∈C m j ,

Equation (10) becomes∑
j∈C

r jQ (·)dQ N + dMC = dQ N ,

or

dQ N

dMC
= 1

1 −
∑
j∈C

r jQ (·) . (11)

This is precisely the result obtained by Cornes and Sandler (2000). To get
a better feeling for the magnitude of this response, let contributors be iden-
tical, with riQ = r jQ = rQ , say, for all i , j ∈ C . Then Equation (11) becomes

dQ N

dMC
= 1

1 − nCrQ (·) . (12)

Normality implies that −∞ < rQ (·) < 0. If we suppose that rQ is bounded
away from zero—that is, there is some value ε such that rQ (·) � ε < 0—then
(12) implies that

lim
nC →∞

dQ N

dMC
= 0.

For example, suppose that each has a Cobb–Douglas utility function of the

form ui (yi , Q) = yQ α . Then ri(·) = mi − Q/α, rQ (·) = −1/α and
dQ N

dMC
= α

α+nC
.

Suppose α = 1. Then, if n = 10, dQ N /dMC = 1/11. If nC = 100, dQ N /dM =
1/101. For a given common value of the individual marginal propensity, the
magnitude of the aggregate propensity falls rapidly as nC increases.

A further implication of Equation (11) is worth noting. Suppose that the
existing contributors are not identical. Then

dQ N

dM
= 1

1 −
∑
j∈C

r jQ (·) � 1

1 − nC min
j∈C

{r jQ } <
1

1 − min
j∈C

{r jQ } . (13)

This may be related to the slope of the relevant player’s income expansion
path. Contributor i’s most preferred level of public good may be written as
a function of her full income: Q̂i (mi + Q−i ). We have the identity Q̂i (mi +
Q−i ) = Q−i + ri (Q̂i (mi + Q−i ), mi ). Differentiating and rearranging,

1

1 − riQ (·) = Q̂ ′
i .

That is, the aggregate response dQ N /dM cannot exceed the smallest indi-
vidual response, min j∈C {Q̂ ′

j }. Not only does the interaction between players’
responses dampen the response of aggregate provision to any change in the
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income of the set of positive contributors. In addition, the presence of just
one contributor with a low propensity to contribute is enough to place a pre-
cise upper bound on the aggregate propensity to contribute of a given set of
positive contributors.

What are the normative implications of a redistribution of initial incomes
in this model? We have shown that redistributions of initial income among
positive contributors change nothing. Redistributions among noncontribu-
tors benefit the recipients and hurt the donors, leaving the utilities of all
others unchanged. But what about redistributions from noncontributors to
contributors? Cornes and Sandler (2000) show that, even when every individ-
ual faces the same unit cost of contribution to the public good, such transfers
can lead to a new Nash equilibrium that Pareto-dominates the equilibrium
associated with the initial income distribution. This is easily shown in a sim-
ple two-type economy. Consider an equilibrium of a public goods economy at
which there are nN noncontributors and nC positive contributors. The utility
of a typical noncontributor is

uN = uN (yN , Q) = uN (mN , Q).

Now suppose that the same amount of income is taken from each noncon-
tributor and given to a positive contributor. To keep the exposition simple,
assume that the set of contributors is unchanged at the new equilibrium. Let
the total extra income received by all contributors be dMC . Each noncontrib-
utor loses an amount of income dmN = −dMC/nN .

The change in utility of a typical noncontributor is

duN = ∂uN (mN , Q)

∂yN
dmN + ∂uN (mN , Q)

∂Q
dQ .

= ∂uN (mN , Q)

∂yN
[νN dQ + dmN ]

= ∂uN (mN , Q)

∂yN
[νN dQ − dMC/nN ],

where νN ≡ ∂uN (mN ,Q)/∂Q
∂uN (mN ,Q)/∂yN

is the noncontributor’s marginal valuation of the

public good. The fact that an individual is choosing not to contribute implies
that, at equilibrium, νN < c . This is consistent with her placing a strictly
positive valuation on the public good. The typical noncontributor will be
better off if, in the course of adjustment to the new equilibrium, νN dQ −
dMC/nN > 0.

To determine whether noncontributors are made better off, we need to
determine the endogenous response of total provision. We already know that

dQ N =
{

1

1 − nCrQ (·)
}

dMC . (14)
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Substituting into (14),

duN

dMC
= ∂uN (mN , Q)

∂yN

[
νN

(
1

1 − nCrQ (·)
)

− 1/nN

]
.

The right-hand side is positive if the expression in square brackets is positive—
that is, if

νN nN > 1 − nCrQ (·).
Using the result obtained above that 1

1−riQ (·) = Q̂ ′
i , this condition may alter-

natively be expressed as

Q̂ ′ >
nC

nN νN + nC − 1
.

This makes sense. If nN is large, each noncontributor is only one of many
who are giving up income, and the gain in the aggregate income of contrib-
utors may be significant by comparison. Furthermore, the greater is Q̂ ′, the
greater is the additional public good provision purchased by a given transfer
of income.

4.4. Comparative Statics of Changes in ci

Let player i be a positive contributor at equilibrium. Now consider equilib-
rium responses to a discrete fall in her unit cost as a public good provider
from its initial value of c0

i to c1
i .

c1
i < c0

i =⇒ ψi
(
Q , c1

i

)
< ψi

(
Q , c0

i

)
=⇒ ri

(
Q , mi , c1

i

)
> ri

(
Q , mi , c0

i

)
.

Evaluated at the initial Nash equilibrium, Q N0 , the aggregate replacement
value must now therefore exceed the equilibrium value. Therefore the equi-
librium value of public good provision must rise: Q N1 > Q N0 .

The rise in equilibrium value of public good provision has an unambigu-
ously beneficial effect for all players other than player i:

PROPOSITION 4.4: If player i is a positive contributor, a reduction in ci raises the
equilibrium utility levels of all players other than i.

However, the effect on the utility of contributor i herself is ambiguous. On
the one hand, the increase in equilibrium provision is beneficial. However,
for any given level of provision, player i finds herself contributing a higher
equilibrium share.

PROPOSITION 4.5: A reduction in ci may either raise or reduce i’s equilibrium
level of utility.
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The only player not guaranteed an increase in utility is the one who
enjoyed the exogenous reduction in unit cost as a contributor!6

4.4.1. An Equal Proportional Change in All c j ’s
Write player i’s unit cost as λc i . Then an equal proportional change in each
player’s unit cost is modeled as a change in λ. Player i’s replacement function
may be written as

ri (Q , mi , λci ) = mi − ŷi

λci
= Max

{
mi − ψi (Q , λci )

λci
, 0

}
.

A reduction in λ shifts every contributor’s replacement function upward,
thereby increasing the equilibrium level of provision. By itself, the increase
in Q increases the utility of each. However, we cannot conclude that every
player is made better off. Recall player i’s utility function:

ui ( ŷi , Q) = ui (min{ψi (Q , λci ), mi }, Q).

Player i enjoys a higher equilibrium level of Q . However, for any given level of
Q , she also experiences a lower level of private good consumption. This effect
may dominate her utility response. Another way to understand this possibility
is to observe that, in the move to the new equilibrium, the total contributions
made by players other than player i may fall. This harmful change in i’s
endowment may outweigh the benefit of her own relative price effect.

PROPOSITION 4.6: An equal proportional reduction in all contributors’ unit costs
will raise the equilibrium level of total provision. However, it may or may not raise the
equilibrium level of utility enjoyed by contributor i.

Here is an example of a situation in which an equal proportional reduc-
tion in every contributor’s unit cost may make a contributor worse off.

Example 2: There are two individuals, whose utility functions are u1 = y 3/4
1 +

Q 3/4, and u2 = Min{y2, Q }. Initially, a1 = a2 = c 1 = c 2 = m1 = m2 = 1. It
may be confirmed that, in equilibrium,

(y1, y2, Q , u1, u2) = (0.67, 0.67, 0.67, 1.47, 0.67).

Now suppose that c 1 = c 2 = 0.9, while all other parameter values remain
unchanged. The new equilibrium values are

(y1, y2, Q , u1, u2) = (0.46, 0.76, 0.78, 1.44, 0.78).

6Buchholz, Nett, and Peters (1998) extend the public good model to incorporate many
heterogeneous players with endogenous incomes in an analysis that exploits its aggregative
structure.
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Player 1, with the high elasticity of substitution between the two goods,
has responded by contributing significantly more to the public good, and
is worse off. Player 2, by contrast, is now contributing less, and is better
off.

If players are identical in every respect, so that the game is symmetric, the
equilibrium response of the representative contributor’s utility to a change
in λ can be signed. In this case, every player’s replacement function shifts
upward in response to a reduction in λ. Hence total provision rises. So too
must each player’s contribution at the new equilibrium. Therefore each player
experiences both an increase in her endowment of contributions by others
and also a beneficial relative price effect.

PROPOSITION 4.7: If all contributors are identical, an equal reduction in every
contributor’s unit cost raises both the equilibrium total provision of public good and the
equilibrium level of utility enjoyed by the representative contributor.

This last proposition was obtained by Cornes and Sandler (1989).

5. Concluding Comments

Aggregative games can be analyzed by conditioning the choices of individual
players on the sufficient statistic that appears as an argument in the payoff of
each. In contrast to the best response function, which conditions player i’s
choice on the choices of all players excluding player i, this simple trick avoids
the unwelcome proliferation of dimensions as the number of heterogeneous
players increases. It thereby permits a simple analysis of asymmetric aggrega-
tive games even with many players and the possibility of boundary solutions.
It also lends itself to an elementary and revealing geometric representation.

Our discussion of these functions and their application to aggregative
games has hardly scratched the surface of a potentially significant range of
applications. To begin with, there are natural extensions to other public good
models. We have elsewhere explored the implications of more general pro-
duction processes whereby individual contributions generate the total quan-
tity Q—see Cornes and Hartley (2001). The impure public good model, in
which an activity jointly generates a private and a public characteristic, is also
aggregative. Here, the change in a player’s contribution that is consistent with
a given change in aggregate provision is a little more complicated than in the
pure public good model, depending as it does on patterns of substitutabil-
ity and complementarity among the goods as well as on the conventional
income term—see Cornes and Sandler (1994, 1996). But assumptions that
imply a continuous decreasing replacement function again are sufficient to
ensure the existence of a unique Nash equilibrium. Finally, we have shown
elsewhere that the monotonicity of the replacement function, while suffi-
cient, is not necessary, for equilibrium in an aggregative game to be unique.
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A weaker sufficient condition is that for all i the function si(Q) ≡ ri(Q)/Q
be decreasing wherever ri(Q) > 0. This allows the private good to be inferior
over some range without endangering uniqueness.

Aggregative games lie at the heart of many other economic models, in-
cluding many Cournot and Bertrand games, contest theory, cost and surplus
sharing models, and models of the “anticommons.” The use of replacement
functions offers the prospect of further insights in these and in many other ap-
plications. We have elsewhere extended our approach to model problems—
such as cost and surplus sharing, and Tullock contests—in which both “best
response” and “replacement” functions fail to be monotonic (see Cornes and
Hartley 2000, 2003). We believe that the present approach merits serious
attention as the most natural way to analyze aggregative games.
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