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Lecture 11

Preference Revelation
Mechanisms for Public
Goods

The Groves-Clarke Mechanism

In the late 1960’s, the idea stork delivered similar good ideas to two different
economics graduate students, Ed Clarke at the University of Chicago and
Ted Groves at UC Berkeley. Each of them independently proposed a taxa-
tion scheme that would induce rational selfish consumers to reveal their true
preferences for public goods, while the government would supply a Pareto
optimal quantity of public goods based on this information.1 The clearest
presentation of the Groves-Clarke idea that I have come across is in a paper
by Groves and Loeb [3]. The Groves-Loeb paper is motivated as a problem
in which several firms share a public good as a factor of production. Each
firm knows its own production function but not that of others. A central
authority will decide the amount of the public factor of production to pur-
chase and the way to allocate its cost based on information supplied by the
firms. This problem is formally the same as a public goods problem with
quasi-linear utility.

The Groves-Clarke mechanism for providing public goods is well-defined
only for the case of quasi-linear utility. We will consider the following model.
There is one private good and one public good. Consumer i has the utility

1Clarke’s solution to this problem was published in [2]. Groves’ solution appeared in
his unpublished 1969 ph.d. thesis.
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function
Ui(Xi, Y ) = Xi + Fi(Y ) (11.1)

where Xi is his private good consumption and Y is the amount of public
good. Each i has an initial endowment of Wi units of private good. Public
good must be produced using private goods as an input. The total amount of
private goods needed to produce Y units of public good is a function C(Y ).
Assume that Fi is a strictly concave function and C a convex function. If
we consider only allocations in which everyone receives at least some private
good, then for this economy there is a unique Pareto optimal quantity of
public good. This quantity maximizes∑

i

Fi(Y )− C(Y ) (11.2)

Consumers are asked to reveal their functions Fi to the government. Let
Mi (possibly different from Fi) be the function that consumer i claims. Let
M = (M1, · · · ,Mn) be the vector of functions claimed by the population. If
the reported vector is M , the government chooses a quantity of public goods
Y (M) that would be Pareto optimal if everyone were telling the truth about
their utilities. That is, the government chooses Y (M) such that:∑

i

Mi(Y (M))− C(Y (M)) ≥
∑

i

Mi(Y )− C(Y ) (11.3)

for all Y ≥ 0.

Taxes Ti(M) are then assigned to each consumer i according to the
formula

Ti(M) = C(Y (M))−
∑
j 6=i

Mj(Y (M))−Ri(M), (11.4)

where Ri(M) is some function that may depend on the functions, Mj , re-
ported by consumers other than i but is constant with respect to Mi.

If the vector of functions reported to the government is M , then Con-
sumer i’s private consumption is

Xi(M) = Wi − Ti(M) (11.5)

and if we substitute from 11.4 and 11.5 into 11.2, his utility is

Xi(M)+Fi (Y (M)) = Wi+
∑
j 6=i

Mj (Y (M))+Fi (Y (M))−C (Y (M))+Ri(M)

(11.6)
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Since Wi + Ri(M) is independent of Mi, we notice that the only way in
which i’s stated function Mi affects his utility is through the dependence of
Y (M) on Mi. We see, therefore from 11.6 that given any choice of strategies
by the other players, the best choice of Mi for i is the one that leads the
government to choose Y (M) so as to maximize∑

j 6=i

Mj(Y ) + Fi(Y )− C(Y ). (11.7)

But recall from expression 11.3 that the government attempts to maximize
n∑

j=1

Mj(Y )− C(Y ). (11.8)

Therefore if consumer i reports his true function, so that, Mi = Fi, then
when the government is maximizing 11.8 it maximize 11.7. It follows that
the consumer can not do better and could do worse than to report the truth.
Honest revelation is therefore a dominant strategy.

If everyone chooses his dominant strategy, true preferences are revealed
and the government’s chooses the value of Y that maximizes

n∑
j=1

Fj(Y )− C(Y ) (11.9)

This leads to the correct amount of public goods. Of course for the device to
be feasible, it must be that total taxes collected are at least as large as the
total cost of the public goods. If the outcome is to be Pareto optimal, the
amount of taxes collected must be no greater than the total cost of public
goods. Otherwise private goods are wasted. We are left, therefore, with the
task of trying to rig the functions Ri(M) in such a way to establish this
balance. In general, it turns out to be impossible to find functions Ri(M)
that are independent of Mi for each i and such that∑

i

Ti(M) = C(Y (M)) (11.10)

However, Clarke and Groves and Loeb found functions Ri(M) that guar-
antee that tax revenues at least cover total costs. Their idea can be explained
as follows. Suppose that for each i, the government sets a “target share”
θi ≥ 0 where

∑
i θi = 1. The government then tries to fix Ri(M) so that

Ti(M) ≥ θiC(Y (M)) for each i. Then, of course,
∑

i Ti(M) ≥ C(Y (M)).
From equation (3), it follows that

Ti(M)−θiC(Y (M)) = [(1−θi)C(Y (M))−
∑
j 6=i

Mj(Y (M))]−Ri(M). (11.11)
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Therefore the government could set Ti(M) = θiC(Y (M)) if and only if
it could set

Ri(M) = (1− θi)C(Y (M))−
∑
j 6=i

Mj(Y (M)). (11.12)

But in general such a choice of Ri(M) would be inadmissible for our purpose
because Ri(M) depends on Mi, since Y (M) depends on Mi.

Suppose that the government sets

Ri(M) = min
Y

[(1− θi)C(Y )−
∑
j 6=i

Mj(Y )]. (11.13)

Then Ri(M) depends on the Mj ’s for j 6= i but is independent of Mi. From
(10) it follows that with this choice of Ri(M) we have:

Ti(M)− θiC(Y (M)) ≥ 0 forall i (11.14)

Therefore ∑
i

Ti(M) ≥ C(Y (M)). (11.15)

This establishes the claim we made for the Clarke tax.

The Groves-Ledyard Mechanism

Groves and Ledyard propose a demand revealing mechanism which they call
“An Optimal Government”. The mechanism formulates rules of a game in
which the amount of public goods and the distribution of taxes is determined
by the government as a result of messages which the citizens choose to
communicate. Although the government has no independent knowledge of
preferences, and citizens are aware that sending deceptive signals might
possibly be beneficial, it turns out that Nash equilibrium for this game
is Pareto optimal. The Groves–Ledyard mechanism is defined for general
equilibrium and applies to arbitrary smooth convex preferences.

In contrast, the Clarke tax (discovered independently by Clarke [1971]
and Groves and Loeb [1975]) is well defined only for economies in which
relative prices are exogenously determined and where utility of all consumers
is quasi-linear.

The Clarke tax has the advantage that for each consumer, equilibrium is
a dominant strategy equilibrium rather than just a Nash equilibrium. Thus
there are no complications related to stability or multiple equilibria. On the
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other hand, the Clarke tax has the disadvantages that although it leads to a
Pareto efficient amount of public goods it generally will lead to some waste
of private goods.

Suppose that there are n consumers, and one public good and one private
good. Each consumer has an initial endowment of Wi units of private good.
To simplify notation slightly, we will consider the special case where public
good is produced at a constant marginal cost of c.

The government asks each consumer i to submit a number, (positive
or negative) mi. The government will supply an amount of public goods
Y =

∑
i mi. To describe the Groves-Ledyard mechanism efficiently it is

useful to define the following bits of notation: Define

m̄∼i =
1

n− 1

∑
j 6=i

mj (11.16)

to be the average of the numbers submitted by persons other than i. We
will also define a function

Ri(m) =
1

n− 2

∑
j 6=i

(mj − m̄∼i)2 (11.17)

For the time being the main thing that we should notice about the odd-
looking expression 11.17 is that Ri(m) depends on the mj ’s for j 6= i, but
does not depend on mi. As we will see, we will use these expressions to
make budgets balance.

When the vector of messages sent by individuals is m = (m1, . . . ,mn),
the Groves-Ledyard mechanism will impose a tax on individual i equal to

T i(m) =
c

n

n∑
k=1

mk +
γ

2
(
n− 1

n
(mi − m̄∼i )2 −Ri(m)) (11.18)

where γ is an arbitrarily chosen positive number.2 Then if the vector of mes-
sages is m, consumer i’s consumption of private goods will Xi(m) = Wi −
T i(m) and the amount of public goods will be Y (m) =

∑
k mk. In Nash equi-

librium, i will choose mi to maximize his utility function Ui(Xi(m), Y (m).
Then a necessary condition for i’s utility will be maximized is

∂Ui

∂Xi

∂Xi(m)
∂mi

+
∂Ui

∂Y

∂Y (m)
∂mi

= 0 (11.19)

2Though Expression 11.18 looks nasty, remember that it is only a quadratic, and we
are soon going to defang this beast by differentiating it.
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Rearranging terms and noticing that Y (m) =
∑

k mk and Xi(m) = Wi−
Ti(m), we find that Equation 11.19 is equivalent to

MRSi(Xi, Y ) =
∂Ti(m)

∂mi
, (11.20)

where MRSi(Xi, Y ) is i’s marginal rate of substitution between public and
private goods.

From Equation 11.20 we deduce the condition:

MRSi(Xi(m), Y (m)) =
c

n
+ γ

n− 1
n

[mi − m̄∼i] (11.21)

Summing the equations in 11.21, we see that∑
k

MRSk(X(m), Y (m)) = c. (11.22)

This is the Samuelson condition for efficient provision of public goods. If
preferences are convex, these conditions are both sufficient as well as neces-
sary for Pareto optimality.

It remains to be shown that total revenue collected by the Groves-
Ledyard tax equals the total costs of the public good. To find this out,
we sum the taxes collected from each i to find that

n∑
i=1

Ti(m) =
n∑

i=1

c

n

n∑
k=1

mk +
γ

2

n∑
i=1

(
n− 1

n
(mi − m̄∼i )2 −Ri(m)) (11.23)

Some fiddling with sums of quadratics will give us the result that

n∑
i=1

n− 1
n

(mi − m̄∼i )2 =
n∑

i=1

Ri(m) (11.24)

Therefore Equation 11.23 simplifies to:

n∑
i=1

Ti(m) =
n∑

i=1

c

n

n∑
k=1

mk (11.25)

Since
∑n

k=1 mk = Y,, this expression simplifies to

n∑
i=1

Ti(m) = cY (11.26)
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which means that revenue exactly covers the cost of the public good.
We have shown that with convexity, if a Groves-Ledyard equilibrium

exists, it is Pareto optimal. Groves and Ledyard are able to show that
equilibrium exists under rather weak assumptions. However, they do not
deal with the question of when equilibrium is unique or stable under rea-
sonable dynamic assumptions. As we will see below, equilibrium is unique
if preferences are quasi-linear.3

The Groves-Ledyard Mechanism with Quasi-linear Utility

It is of interest to examine the nature of the Groves–Ledyard mechanism
as applied to the case of quasi-linear utility, where each consumer i has a
utility function Ui(Xi, Y ) = Xi + Fi(Y ). Studying the quasilinear case
will help us to develop some “feel” for the device by seeing how it performs
in a manageable environment. It also is useful to compare the merits of
this system with the Groves-Clarke mechanism when both are operating on
Groves-Clarke’s home turf. (Remember that the Groves-Clarke mechanism
is defined only for quasilinear utility.)

We are able to show quite generally that when there is quasi–linear
utility, the Groves–Ledyard mechanism has exactly one Nash equilibrium.
Furthermore, this equilibrium is quite easily computed and described. This
is of some interest because, in general, little is known about the unique-
ness of Groves–Ledyard’s equilibrium and the question of the existence of
equilibrium is also less than satisfactorily resolved.

If the vector of messages is m = (m1, · · · ,mn), consumer i’s utility will
be

Wi − T i(m) + Fi(
n∑

k=1

mk). (11.27)

Since F ′′
k < 0, Equation 11.22 has a unique solution for

∑
k mk. Let Ȳ

denote this solution. Now define

βi = F ′
i (Ȳ ). (11.28)

Then 11.21 can be rewritten as

βi = γ[mi −
1
n

Ȳ ] + αiq. (11.29)

3Bergstrom, Simon, and Titus [1] show that for a large class of simple utility functions,
there are multiple equilibria. However, Page and Tassier [4] show that the “extra” equi-
libria found by Bergstrom, Simon, and Titus are unstable, and for sufficiently high levels
of the parameter γ, do not exist.
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Now αi, q and γ are parameters and βi is uniquely solved for by 11.22 and
11.28. Thus we solve uniquely for mi as follows:

mi =
1
γ

(βi − αiq) +
Ȳ

n
. (11.30)

This establishes our claim that in the case of quasi–linear utility, Nash
equilibrium exists, is unique and is easily computed.
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