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Lecture 8

Models of Highway

Congestion

The Bottleneck Model

The model considered here was developed by William Vickrey [3]. My dis-
cussion is largely a restatement of results found in an excellent paper by
Arnott, De Palma and Lindsey [1].

Every morning N identical commuters must travel from home to work.
Highway traffic is slowed by a single bottleneck, a bridge located between
the commuters’ homes and their workplace. Cars are able to pass over this
bridge at the rate s per minute. All commuters would prefer to arrive at
work at the same time t∗, but the bottleneck makes this impossible. Instead
there will be a “rush hour”, lasting for N/s minutes, the time that it takes
the N commuters to pass through the bottleneck. We assume that the time
required to drive from home to the bridge is negligible, as is the time required
to drive to work after crossing the bridge. Commuters cross the bridge in
the same order in which they leave home. In equilibrium, a rush-hour queue
will form as commuters leave home more rapidly than the bridge can serve
them.

Everyone’s first choice would be to pop out of bed at t∗ and arrive at
work immediately, without meeting any traffic. But this is not possible for
everyone. Commuters face a tradeoff between rising early to beat the traffic,
arriving at work late, or spending more time in the traffic queue in order
to arrive at work at a preferred time. Let us assume that the cost of the
inconvenience of arriving at work early, at time t∗ − t, is βt and the cost of
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arriving at work late, at t∗ + t is also βt.1 Time spent waiting in a traffic
queue is even more costly. The cost per minute of sitting in the traffic queue
is α, where α > β.

In equilibrium, commuters must be indifferent about which time during
the rush hour they leave for work. The first commuter to leave for work will
face no queue and will be first to arrive at work. The last commuter to leave
for work will also face no queue and will be the last to arrive. In equilibrium
the first and last commuter must be equally well off, and the time elapsed
between their departures will be N/s. Therefore the first commuter must
depart at t∗ − N

2s
and the last at t∗ + N

2s
. Since they spend no time in traffic

queues, each of these commuters has total travel costs of βN/2s.

Let us consider commuters who arrive at work before t∗. For these
workers, arriving at work later is better than arriving earlier. In equilibrium,
we expect that those arrive at work closer to their preferred time must spend
time in the traffic queue. Let D(t) be the length of the traffic queue at time
t. Since cars cross the bridge at the rate s, a commuter who joins the queue
at time t must spend D(t)/s minutes in the queue and arrive at work at
time t+D(t)/s, which is t∗− t− (D(t)/s) minutes before t∗. In equilibrium,
all commuters have the same utility as the first commuter to leave for work.
This implies that for commuters who leave for work at time t and arrive at
work before t∗,

β
N

2s
= α

D(t)

s
+ β(t∗ − t −

D(t)

s
). (8.1)

Solving this equation for D(t), we have:

D(t) =
βN

2(α − β)
+

(

sβ

α − β

)

(t − t∗). (8.2)

For any time t during the rush hour, let r(t) to be the rate at which people
leave home to go to work. The rate of growth of the queue at time t is then

Ḋ(t) = r(t) − s (8.3)

From equations 8.2 and 8.3 it follows that

Ḋ(t) =
sβ

α − β
= r(t) − s (8.4)

1Arnott et al show that it not hard to solve this problem when the cost per minute of
being late is different from that of being early. I will leave this case (and still more general
cases for you to do as homework.
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and hence

r(t) =
sα

α − β
> s, (8.5)

and

Ḋ(t) = r(t) − s =
sβ

α − β
, (8.6)

From Equations 8.5 and 8.6 we see that, starting at time t∗ − N/2s,
people leave home at a constant rate r > s and the traffic queue grows at
the rate sβ/(α − β) so long as those who join the queue get to work before
t∗. Let t̃ be the departure time that would allow a commuter to arrive at
work exactly at t∗. Then it must be that t̃ + D(t̃)/s = t∗, and therefore it
follows from equation 8.2 that

t̃ = t∗ −
β

α

N

2s
. (8.7)

Commuters who leave home after time t̃ will get to work later than the
preferred time t∗. The queue will get shorter after t̃ as later departures mean
an ever more inconvenient arrival time at work. The maximum length that
the queue reaches is

D(t̃) =
β

2α
N (8.8)

It is interesting to notice that this maximum length does not depend on
the capacity of the bridge. Thus a highway engineer who expects to reduce
the length of queues by increasing capacity is going to be disappointed. Of
course if capacity is increased, the amount of time that commuters spend in
a queue of a given length is diminished proportionately.

In equilibrium, commuters who leave home after t̃ have the same costs
as those who leave before. This implies that where t̃ < t < t∗ + N/2s,

β
N

2s
= α

D(t)

s
+ β(

(

t +
D(t)

s

)

− t∗) (8.9)

and therefore

D(t) =
βN

2(α + β)
−

(

sβ

α + β

)

(t − t∗). (8.10)

We see from equation 8.10 that after t̃, the queue diminishes at the
constant rate

Ḋ(t) = −

sβ

α + β
(8.11)
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until it disappears entirely at time t∗+N/2s, when the last commuter leaves
for work. Since Ḋ(t) = r(t) − s, it follows that from t̃ until the end of the
rush hour at t∗ + N/2s, commuters leave for work at the rate

r(t) = s
α

α + β
< s. (8.12)

Figure 8.1: Rush Hour
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Figure 8.1 shows the situation graphically. The line AC is drawn with
constant slope s. The height of the line at any time t represents the cumula-
tive number of commuters who have crossed the bridge by time t. The line
AB is drawn with slope r(t) = sα/(α − β), which is the departure rate who
arrive at work early. The height of this line at time t denotes the number
of commuters who have left for work before t. The commuter who leaves
for work at time t̃ will arrive at work at exactly t∗. After time t̃, the rate
of departures from home is r(t) = sα/(α + β) and the height of the line
BC shows the cumulative number of persons who have left for work by the
corresponding time. Since at any time, the number of commuters who have
left home is the height of the broken line ABC and the number who have
arrived at work is that of the line AC, the vertical distance between these
two lines is the length of the traffic queue at the corresponding time. For
any time t, the horizontal distance from the corresponding point on ABC
to the line AC is the length of time that a commuter who leaves home at
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t will spend in the traffic queue. For example, at time t̃, BF commuters
have left for work, while DF of them have passed over the bridge. Thus the
length of the queue is BD. The number of persons who will have passed
over the bridge at time t∗ is equal to BF which is the same as the number
who will have left home by t̃. Thus the commuter who leaves home at time
t̃ will pass over the bridge at t∗. The amount of time that this commuter
spends in the queue is the horizontal distance BE.

Welfare Analysis and the Use of Tolls

In equilibrium, each of the N commuters incurs the same total commuting
cost, which we have seen to be βN/2s. Therefore the total commuting costs
of all N individuals are βN2/2s. Let us call the part of a commuter’s costs
that is due to arriving at work at a less than ideal time the displacement

cost and the part that is due to waiting in line, the queueing cost. Since
commuters arrive at work at a uniform rate of s from time t∗ − N/2s until
t∗ + N/2s, it is easy to see that the average displacement cost for those
who arrive at work before t∗ is βN/4s and the average displacement cost for
those who arrive at work after t∗ is also βN/4s. Thus total displacement
cost summed over all commuters is βN2/4s, which is exactly half of total
costs βN2/2s borne by commuters.

The other half of costs incurred by commuters are queueing costs. These
costs are entirely “wasted” in the sense that they could be avoided if com-
muters would coordinate their departures from home appropriately. Suppose
that commuters could be persuaded to leave their homes at a constant rate
s starting at time t∗ − N/2s and ending at time t∗ + N/2s. Since they
would leave home at the same rate as they cross the bridge, no queue is
formed and no commuter has to spend time in a queue. In fact, their pat-
tern of arrival at work and their total displacement costs would be exactly
the same as that we found in equilibrium. But since they would have no
congestion costs, their total costs would be exactly half of the costs found
in equilibrium. The trouble with the coordinated solution is that it is hard
to see how it could be maintained as a decentralized equilibrium. In the
absence of queues, those commuters who leave for work at times closer to t∗

are better off than those who arrive either near the beginning or near the
end of the rush hour. How can we persuade some people to accept a less
convenient departure time than is allowed to others?
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Time-varying tolls

A toll that changes over by time of use could be designed to achieve full
efficiency. Suppose that the toll is set at zero for those who commute at
the earliest time, t∗ − N/2s, then rises at the rate β per minute until time
t∗ and finally, after time t∗ falls at the rate β per minute. In the absence
of congestion, this tax scheme would leave commuters indifferent about the
time they leave for work, since the higher costs of arriving at work at a
less desired time are exactly compensated by the lower taxes collected at
this time. With this toll in place, there would be an equilibrium with no
congestion. Total costs of each commuter, including taxes plus displacement
costs are exactly βN/2s, which is the same as total cost in the absence of
a toll. Thus we see that nobody is made worse off by the imposition of the
toll. The difference is that the queueing costs that were wasted with no tolls
are collected by the government in the form of taxes and are available for
other purposes. Total revenue collected from the tax is

βN2

4s
(8.13)

Unless the toll revenue is entirely wasted, this toll is strictly Pareto
improving.

The time varying toll is remarkably efficient relative to most taxes. In
fact, this tax imposes literally no burden on commuters relative to the no-
tax outcome. This stands in remarkable contrast to the standard result that
ordinary excise taxes in the absence of congestion impose an ”excess burden
greater even than the amount of revenue collected.

Uniform Tolls

With electronic technology, it seems to be technically feasible to charge tolls
that vary essentially continuously over the rush hour period and to collect
these tolls without disrupting traffic. But this does require investment and
may not be an acceptable solution in many circumstances. Thus it is useful
to consider the possibility of charging a single toll to all who use the bridge.
Although such a toll would not affect the pattern of traffic queuing directly,
we can show that if the number of commuters is responsive to the cost
of commuting, then a uniform toll will in general reduce the number of
commuters and in so doing improve efficiency.

Let us suppose that the number of commuters who demand to cross the
bridge is determined by a downward-sloping “demand function Φ(p) where
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p is the cost to a consumer of commuting, including displacement costs,
queueing costs as well as any toll that is charged.

In equilibrium, without a toll, if there are N commuters, we must have
Φ(p) = N . From our earlier analysis, we also know that all individuals face
commuting costs of βN/2s. We can find equilibrium with familiar-looking
“supply and demand curves as in Figure 8.2. Equilibrium occurs where the
curve Φ(p) = N cuts the line p = βN/2s, with the quantity N0 shown in
the figure.

When a uniform toll of τ is applied, the congestion patterns are the
same as those without a toll. The only effect is to change the number
of commuters. Thus when the number of commuters is N and the toll is
τ , the cost of commuting is p = τ + βN/2s. The equilibrium number of
commuters is then the solution to the simultaneous equations N = Φ(p)
and p = τ + βN/2s. This occurs with the quantity N(τ) shown in the
figure.

Figure 8.2: Demand and Supply for Commuting
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It is easy to show that if Φ(p) is a decreasing function, and if also Φ(0) >
τ and Φ(p) approaches zero for large p, then for each tax rate τ , there is
exactly one solution for the equilibrium quantity amount of commuting.
Let us denote this quantity by N(τ). It is also easy to show that N ′(τ) < 0
whenever the demand curve Φ(p) is downward sloping.

When the toll is set at τ , total commuting costs excluding taxes are
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βN(τ)/2s for each commuter. Thus the sum of commuting costs for all
commuters equals βN(τ)2/2s. The marginal increment to total costs caused
by an extra commuter is therefore βN(τ)/s. With tax rate τ , the private cost
of commuting for any consumer is τ + βN(τ)/2s. The Samuelson efficiency
conditions require that commuters travel only if they value the trip at least as
highly as the total congestion costs it imposes. These conditions are satisfied
if the toll is set so that after-tax cost to a commuter of making a trip equals
its social cost. This condition can be stated as τ + βN(τ)/2s = βN(τ)/s,
or equivalently

τ = βN(τ)/2s. (8.14)

This condition gives us a good idea of the appropriate magnitude for con-
gestion tolls if the only tax instrument available is a uniform toll. From
equation 8.14 it follows that the optimal toll rate is about as large as the
displacement cost incurred by the first individuals to leave for work, which is
also equivalent to the queuing cost borne by those who arrive at the preferred
time t∗.

We should notice that the optimal uniform toll, unlike the optimal time-
varying toll is not automatically a Pareto improvement over the no-toll out-
come. In fact, if the revenue from the uniform toll were simply wasted, all
commuters would be made worse off by the existence of this toll. This is ap-
parent because in equilibrium with a positive uniform toll, the total cost of
commuting is higher for every commuter than it is with no toll. (See Figure
8.2.) With the optimal toll in place, it is possible to work out a scheme of
rebates of the tax revenue that makes every commuter better off than with
no rebates, but this will not be the case in general for arbitrary use of the
tax revenue.

Optimal Capacity, With and Without Tolls

The total cost of congestion at a bottleneck depends on the number of users,
the pricing mechanism, and on the capacity of the bottleneck. Let’s look
into the optimal amount of capacity under alternative pricing institutions.

Let C(s) be the cost of providing capacity s at the bottleneck. For a
concrete example, we might assume that C(s) = Ksa. This function is
said to be homogeneous of degree a. There are increasing, decreasing, or
constant returns to scale, depending on whether a < 1, a > 1, or a = 1. The
amount of capacity will be efficient if the sum of costs is minimized where
costs include the cost of congestion plus the cost of constructing capacity.
Thus at optimal capacity, the marginal cost of capacity should be equal to
minus the derivative of congestion costs with respect to capacity.
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Optimal capacity with an optimal time-varying toll

We first consider the condition for optimal capacity that applies when an
optimal time-varying toll is used. With the optimal toll, queuing costs are
eliminated and if tax revenue is not wasted, the net social cost of congestion
is βN2/4s. Thus the efficiency condition becomes:

−

d

ds

βN2

4s
=

βN2

4s2
= C ′(s). (8.15)

which for the case of a cost function homogeneous of degree a implies:

βN2

4s
= aKsa = aC(s) (8.16)

Recall from 8.13 that the expression on the left side of 8.16 is equal to
total revenue from the optimal time-varying tax. Thus we see that if there
are constant returns to scale in the production of capacity, then the optimal
time-varying tax would exactly pay for a bridge of optimal capacity. We also
see that the optimal tax would collect more or less than the cost of optimal
capacity depending on whether there are decreasing returns to scale (a > 1)
or increasing returns to scale (a < 1).

Optimal Capacity with a uniform toll

In our analysis of the effects of a uniform toll, we showed that for a fixed
bridge capacity if the number of commuters depends on the cost of commut-
ing according to a demand function Φ(p), then the equilibrium number of
commuters at toll τ is given by a decreasing function N(τ). If capacity is
also variable, then we can show that the number of commuters will depend
both on the capacity, s as well as tax rate τ . Thus we could define the
equilibrium number of commuters as N(s, τ).

If the number of commuters is N(s, τ) then the equilibrium total com-
muting cost for each consumer is βN(s, τ)/2s. If the number of commuters
were to remain unchanged as capacity changes, then the marginal reduction
in commuting costs for each current commuter resulting per small increase in
capacity would be βN(s, τ)/2s2. This is the amount that each current com-
muter would be willing to pay for a marginal increase of capacity. Summed
over all commuters we would have a total willingness to pay of βN2(s, τ)/2s2.

Suppose that the cost of constructing capacity s is C(s). Then the
first-order condition for an efficient capacity (assuming that the number of
commuters is held constant would be:
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βN(s, τ)2

2s2
= C ′(s). (8.17)

With a homogeneous cost functions, it follows that Equation 8.17 is
equivalent to

βN(s, τ)2

2s
= aKsa = aC(s) (8.18)

This condition implies the interesting result that efficient expenditure
on capacity on bridge capacity is greater than, equal to, or smaller than
the total of displacement costs and queuing costs incurred by commuters
depending on whether there are decreasing, constant, or increasing returns
to scale in providing capacity. .

Since N(s, τ) is a decreasing function of τ , the solution of 8.17 for optimal
s is greater if there is no toll than if there is a toll. But in this calculation, we
have assumed that the number of commuters does not change with capacity.
If there is no toll either before or after new construction, this assumption is
not appropriate. Greater capacity attracts more users and this effect reduces
the gains to each current user accordingly. Thus the optimal capacity with
no tolls would be lower than that found by solving equation 8.17.

In the case where an optimal toll is charged, it is also true that increased
capacity increases the number of users. But in this case, the extra congestion
caused by these extra users is exactly balanced by the toll revenue collected
from them. Thus the condition in equation 8.17 is the appropriate first order
condition.

Transportation Network Problems

This section discusses the Downs-Knight-Pigou traffic paradox, drawing on
an article written for a general audience by Arnott and Small [2].

It is important to recognize that the demand for travel on one roadway is
strongly influenced by conditions on alternate roads. This sometimes leads
to surprising results.

For example, suppose that there is a population of N workers who live
on the opposite side of town from the factory where they work. As in our
previous example, workers prefer to arrive at work at some time t∗ and
arriving earlier or later is costly to them There are two ways for workers to
get from their homes to the factory. There is a direct route directly through
the town and there is also a much longer, indirect route that circles the
town. The direct route passes over a bridge with limited capacity s. If N1
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workers use the bridge, then as in our previous discussion, each of these
workers bears a cost of βN1/2s

The indirect route is a large, uncrowded freeway and the amount of time
that it takes to get to work by this route is T2 minutes, regardless of how
many commuters use this route. Commuters who take this route can arrive
at work just on time, but for them, the cost of spending T2 minutes on the
road is αT2.

In equilibrium, commuters will be indifferent between the two routes.
Thus the number of commuters who cross over the crowded bridge will be
N1 such that βN1/2s = αT2 and hence

N1 = 2s
α

β
T2.

Thus, in equilibrium nobody is better off than the people who use the ring
road and indeed the existence of the shortcut over the bridge provides no
net benefits to anyone. Moreover, so long as there are no restrictions on
access, small increases in the capacity of the bridge will typically result in
no net benefits. The newly expanded bridge will simply attract more users
until using the bridge is no better than using the ring road. Of course if
the capacity of the bridge is made large enough so that βN/2s < αT2, then
nobody would use the ring road and further increases in bridge capacity
actually reduce equilibrium travel costs.

If bridge access were managed to minimize total commuting costs, then
it would have to be that the number N1 of bridge users would minimize

N1

βN1

2s
+ (N − N1)αT2.

Applying calculus to this expression, we see that costs are minimized when

N1 = s
α

β
T2.

Thus efficiency requires that the shortcut be used by only half as many
commuters as the number who use it in equilibrium. This outcome could be
enforced by an appropriate toll.

Exercises

8.1 Every morning, 6,000 commuters must travel from East Potato to West
Potato. There are two ways to make the trip. One way is to drive straight
across town, through the heart of Middle Potato. The other way is to take
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the Beltline Freeway that circles the Potatoes. The Beltline Freeway is
entirely uncongested, but the drive is roundabout and it takes 45 minutes
to get from East Potato to West Potato by this means. The road through
Middle Potato is much shorter and if it were uncongested it would take only
20 minutes to make the trip. Given the current size of the road through
Middle Potato, if the number of commuters using the road is N1, the time it
takes to drive from East Potato to West Potato by this road is 20+N1/100.

a). With the road at its current size and with no tolls, how many com-
muters will use the road through Middle Potato? What will be the
total number of minutes per morning spent by all commuters going
from East Potato to West Potato?

b). Suppose that a social planner controlled access to the road through
Middle Potato and chose the number of commuters who were allowed
to use the Middle Potato road in such a way as to minimize the sum
of the number of minutes spent by commuters traveling from East
Potato to West Potato. How many commuters would the social planner
permit to use the Middle Potato road each morning? How long would
it then take the commuters who used this road to make their morning
commute?

c). Suppose that commuters value time saved from commuting at $w per
minute. Suppose that the government charges a toll for driving on
the road through Middle Potato and divides the revenue from the toll
equally among all 6,000 commuters. If the government’s objective is
to minimize the total amount of time that people spend commuting,
how high should it set the toll? How much revenue will it collect?
With this policy, how much better off (evaluated in dollars) is each
commuter than they were in the equilibrium with no tolls?

8.2 Suppose that a monopolist controls the road through Middle Potato and
sets the toll that maximizes total revenue. What price will the monopolist
set and how many people will use the road at this price? How does this
price compare with the optimal toll?

Hint: First find the “demand curve” relating number of users to

price. Then find the revenue-maximizing quantity and price.

8.3 Suppose that the road through Middle Potato can be widened at a
cost of $p per inch per day. If the road is widened by H inches and if N1
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people use the road, the time that it would take to drive to from East Potato
to West Potato by this road would be 20 + N1/(100 + H). Suppose that
the government’s objective function is to maximize the total value of time
saved from commuting minus the sum of money spent on road building. Let
w is the value per minute of time saved from commuting. Assuming that
the government can not charge a toll for the road, or what values of the
parameters p and w would it pay to widen the road at all. (Assume that
there is no congestion for commuters coming home from work, only going
to work.) If it pays to widen the road, how many commuters will be using
the road when it is optimally widened? How long will it take them to make
the trip, given that the road is optimally widened?

8.4 Suppose that as in the previous problem, the road through Middle
Potato can be widened at a cost of $p per inch per day. Suppose also that
the government can charge an efficient toll for using this road. What is
the best combination of toll and highway expenditures? How does total
toll revenue compare with the cost of building the highway? How does the
optimal amount of highway expenditures compare with the optimal amount
if the government cannot charge a toll? Hint: Think about two possible
corner solutions.

8.5 Generalize the bottleneck problem so that the cost per minute of being
late can take a different value γ from the cost per minute of being early.
Show what happens in the limit as γ gets large.

8.6 Generalize the bottleneck problem so that the everyone has a utility
u(t) for arriving at work at time t where u(t) is a fairly arbitrary single-
peaked (or single-plateaued) function. (Assume that u′(t) > −sα for all
relevant t.) Which results from our earlier discussion still apply and which
do not?

8.7 What happens in the above generalization if u′(t) < −sα

8.8 Generalize the model to allow two types of commuters with different
preferred times of arrival.
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