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1 Introduction

Ronald Coase [10] argued that a proper economic analysis of harmful externalities should ac-
count for the fact that causation is usually two-sided. The amount of damage typically depends
on the actions of the impacted parties as well as the actions of the externality generators. Coase
maintained that, regardless of the way in which the law assigns liability, if the offended and
offending parties are able to bargain freely, they are likely to reach an efficient solution where
the value of marginal gains to activity by the externality generator are equal to the value of
marginal losses to the damaged parties. Coase also asserted [10] (p 10) that “With costless
market transactions, the decision of the courts concerning liability for damage would be without
effect on the allocation of resources.”

Coase’s article consists of a series of examples and some insightful discussion. Coase made
no claim to a formal theorem based on explicit assumptions. The commonly-used term ”Coase
Theorem” originated with George Stigler, who explained Coase’s ideas in his textbook The
Theory of Price. [16] (pp 110-114) Stigler claimed (without proof) that the Coase theorem
establishes two results:

1. Under perfect competition, private and social costs will be equal.

2. The composition of output will not be affected by the manner in which the law assigns
liability for damage.

Result 1 of Stigler’s version of the Coase theorem can be interpreted as a statement that
private bargaining “in the absence of transaction costs” will lead to a Pareto optimal level of
externality-producing actions. Result 2 would follow from Result 1 only if it were true that in
every Pareto optimal allocation, the amount of externality-producing activities would be the
same, regardless of how private goods are distributed.

In the view of Coase and Stigler, the way in which liability is assigned affects “only” the
distribution of private income, while the level of externalities to which bargaining leads is always
be the same efficient amount.

In a paper called What is the Coase Theorem?, Leo Hurwicz [13] sought a genuine “Coase
Theorem,” with assumptions and a proof. Hurwicz referred to Stigler’s Result 2 as the Coase
independence phenomenon and investigated assumptions on preferences that would be necessary
as well as sufficient for an economy to satisfy the Coase independence property. Hurwicz pointed
out that the “no income-effects” condition, which requires utility functions be of quasi-linear
form, linear in private goods, is sufficient for the Coase independence phenomenon. Hurwicz
showed that if at least one consumer has quasi-linear preferences, then there will be Coase

∗I am grateful to Di Wang of UC Santa Barbara for many helpful conversations about these ideas.
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independence only if all consumers have quasi-linear preferences. He then argued that the
so-called Coase theorem is of severely limited applicability, since it requires that consumers’
willingness to pay for reductions in harmful externalities do not depend on their incomes.

In two earlier papers [4, 5], Richard Cornes and I posed the question: “When are Pareto
efficient quantities of public goods independent of income distribution?” We found such inde-
pendence for a more general class of preferences than the quasilinear family. While this class
remains restrictive, preferences of this type allow willingness to pay for public goods to depend
on income, and also allow for preferences to differ between individuals. We did not explictly
consider harmful externalities, but interpreted our result as applying to the provision of public
goods regarded as beneficial (or at least not harmful) by all consumers.

John Chipman and Guoqian Tian [8] revisited Hurwicz’s contribution.They examined a
model with two agents, a polluter and a pollutee,and and two commodities, a consumer good
and pollution. They define Coase independence in a less demanding form than did Hurwicz,
and when they do so, they found that for their polluter and pollutee, Coase independence
is essentially equivalent to having preferences belong to the family of preferences found by
Bergstrom and Cornes. Thus it is possible for there to be Coase independence even if people
are willing to pay more to reduce pollution as they get richer.

Interesting applications of Coase independence have also appeared in discussions of the
family. Gary Becker [2] (page 331) suggested that the “Coase theorem” implies that changes
in divorce law, such as requiring divorce by mutual consent rather than unilateral withdrawal,
would not affect divorce rates, though they might affect the division of family resources within
marriages. Becker reasoned that if a married couple will always reach efficient bargains with
each other about the terms of marriage, then the Coase theorem implies that they will divorce
if and only if they can both be better off divorced than they would be under any arrangement
of benefits within marriage.

Chiappori et al [9] argue that Becker’s assumption of Coasian independence may not be
appropriate in the case of divorce, because the utility possibility frontier for a married couple
could quite plausibly cross the utility possibility frontier for these two if they were divorced,
in which case some Pareto efficient outcomes would leave them married and others would have
them divorced. If this is the case, the authors point out that the decision of a couple to divorce
or not “depends on the location of the final outcome on the efficiency frontier,” which in turn
depends on the allocation of rights assigned by divorce law.

This paper revisits the contributions of Bergstrom and Cornes, Hurwicz, Chipman and
Tian, and Chiappori et al. We extend the Bergstrom-Cornes results to include the case of
harmful externalities, and show that Coase independence applies to a class of economies which,
while still restrictive, allows there to be income effects on the valuation of externalities. We
present what we believe to be a more thorough and clearer treatment of the issue of Coasian
independence than can be found elsewhere.

2 Technology and Preferences

2.1 Feasible Allocations

Consider a community with n consumers, one private good and m public variables. We refer
to public variables rather than public goods, since we allow the possibility that some of these
variables represent levels of externalities that are disliked by some or all consumers. We refer
to a vector y that specifies the level of each public variable as a public choice. We assume that
there is an initial aggregate endowment of W units of private goods and a cost function c(·)
such that given the public choice y, the amount of private goods available to be distributed
among the n consumers is W − c(y). Stating this more formally:
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Assumption 1 (Endowment and Technology). There is an initial endowment W > 0 of private
goods and a compact set Y ⊂ <m+ of possible public choices. There is a continuous cost function
c(·) defined on Y such that x = W − c(y) is the amount of private goods available when the
public choice is y.

Definition 1 (Feasible allocations). The set of feasible allocations is

F =

{
(x1, . . . , xn, y)|(x1, . . . , xn) ≥ 0, y ∈ Y, and

∑
i

xi = W − c(y)

}
.

Definition 2 (Feasible interior allocations). A feasible allocation (x1, . . . , xn, y) is said to be
interior if xi > 0 for all consumers i.

2.2 Preferences that are uniformly affine in private goods

Each consumer has preferences over outcomes (xi, y) ∈ <+ × Y , where xi is i’s consumption of
private goods and y is the vector of public variables. These preferences are representable by con-
tinuous utility functions of the form ui(xi, y). We consider the following family of preferences,
which generalize the notion of quasi-linear utility.1

Definition 3 (Uniformly affine in private goods). Preferences over the domain (Xi, Y ) are
uniformly affine in private goods if for all consumers i, these preferences can be represented by
a utility function of the form:

ui(xi, y) = A(y)xi +Bi(y),

where A(y) and Bi(y) where A(y) > 0 for all y ∈ Y .

Notice that the function A(y) is common to all i, while the functions Bi(y) may differ
between individuals. If preferences are uniformly utility affine in private goods, then Consumer
i’s marginal rate of substitution between the public variable j and private goods is

mi
j(xi, y) =

Aj(y)

A(y)
xi +

Bi
j(y)

A(y)
. (1)

where Aj(y) and Bi
j(y) are partial derivatives of A and Bi with respect to yj.

The familiar example of quasi-linear utility is a special case of uniformly affine preferences
where A(y) = 1. If consumers have quasi-linear utility, then each consumer i’s marginal rate
of substitution between public variable j and the private good is simply Bi

j(y), which is inde-
pendent of private consumption xi.

From Equation 22, we see that consumers’ marginal rates of substitution between public
variable j and the private good increases or decrease with i’s private consumption depending
on whether the partial derivative, Aj(y), is positive or negative. Since the sign of Bi

j(y) may
differ between consumers, it may be that some consumers prefer more and some consumers
prefer less of a public variable j.

3 Utility Possibility Sets

The notion of utility possibility set, which was introduced by Paul Samuelson [14], can be
usefully adapted to explore the relation between wealth distribution and efficient allocations.

1This class of utilities was introduced by Bergstrom and Cornes [5]. Chiappori et al [9] refer to these as
“generalized quasi-linear utilities.”
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3.1 Contingent Utility Possiblity Sets

We define the y-contingent utility possibility set for any vector y ∈ Y as the set of utility
distributions that are possible if the public choice is y and the corresponding amount of private
goods, W − c(y), is somehow divided among consumers.

Definition 4 (y-Contingent Utility Possibility Set). The y-contingent utility possibility set for
an economy with initial wealth W and cost function c(·) x is

UP (W, y) =

{
(u1(x1, y), . . . , un(xn, y)) | (x1, . . . , xn) ≥ 0, and

∑
i

xi = W − c(y)

}
.

The full utility possibility set is then the union of the y-conditional utility possibility sets
over all y ∈ Y .

Definition 5 (Utility possibility set). The utility possibility set for an economy with initial
wealth W and the set Y of possible public choices is

UP ∗(W,Y ) = ∪y∈YUP (W, y).

Figure 1 shows a y-contingent utility possibility set for an economy with two consumers
whose preferences are uniformly affine in private goods, with ui(xi, y) = A(y)xi + Bi(y) for
i = 1, 2. Adding these equations and recalling that x1 + x2 = W − c(y), we have the equation

u1(x1, y) + u2(x2, y) = A(y) (W − c(y)) +B1(y) +B2(y).

It follows that the y-contingent utility possibility set is the line segment consisting of all (u1, u2)
such that u1 + u2 = W − c(y) +B1(y) +B2(y) and such that ui ≥ Bi(y) for i = 1, 2.

Figure 1: A y-Contingent Utility Possibility Set

u1

u2

C

D

B1(y) A1(y)(W − C(y)) + B1(y)

B2(y)

A2(y)(W − C(y)) + B2(y)

3.2 Parallel Contingent Utility Possibility Sets

We say that y-contingent utility possibility sets are parallel over the set F of feasible allocations
if there exist utility functions ui(xi, y) for each consumer i such that for all (x1, . . . , xn, y) ∈ F ,
the y-contingent utility possibility sets lie in parallel hyperplanes, with the sum of utilities
constant for each y. Formally, we state this condition as follows.
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Definition 6 (Parallel contingent utility possibility sets). Contingent utility possibility sets are
said to be parallel on a set F of feasible allocations if there is a real-valued F (·) with domain
Y and for every consumer i there exists a utility function ui(xi, y) that represents preferences
of i such that the y-contingent utility possibility set UP (W, y) is contained in the hyperplane

{(u1, . . . , un)|
∑
i

ui = F (y)}.

Proposition 1 tells us that if preferences are uniformly affine in private goods, then y-
contingent utility possibility sets must be parallel on Y . Proposition 2 tells us that the converse
statement is also true.

Proposition 1. If preferences of all consumers are uniformly affine in private goods, then the
y-contingent utility possibility sets are parallel and take the form

UP (W, y) =
{

(u1, . . . , un) ≥
(
B1(y), . . . , Bn(y)

)
|
∑

ui = F (y)
}

where F (y) = A(y) (W − c(y)) +
∑

iB
i(y).

Proof. If preferences are uniformly affine in private goods, then preferences of each consumer i
are represented by ui(xi, y) = A(y)xi +Bi(y). Then it must be that∑

i

ui(xi, y) = A(y)
∑
i

xi +
∑
i

Bi(y).

An allocation (x1, . . . , xn, y) is feasible if and only if
∑
xi = W − c(y) and xi ≥ 0 for all i.

Therefore the y-contingent utility possibility set is the set

{(u1, . . . , un) ≥
(
(B1(y), . . . , Bn(y)

)
|
∑

ui = F (y)}

where F (y) = A(y) (W − c(y)) +
∑

iB
i(y). Hence the y-contingent utility possibility sets are

parallel on Y .

In order to prove that uniformly affine preferences are necessary as well as sufficient for par-
allel y-contingent utility possibility sets, we use a standard result from the theory of functional
equations. An equation that satisfies the equation f(x+ y) = g(x) + h(y) for all real-valued x
and y is known as a Pexider functional equation.(See Aczel [1], page 142). Aczel shows that if
f , g, and h are continuous and satisfy the Pexider functional equation, then there must be real
numbers a, b, and c, such that f(x) = ax+ b+ c, g(x) = ax+ b and h(x) = ax+ c.

This result generalizes in a straightforward way to the case of sums of n terms. Although
the usual statement of the result deals with functions whose domain is the entire real line, the
proof that Aczel uses for the Pexider result shows that that this result holds if the domain is
the non-negative reals.2 We have the following lemma.

Lemma 1 (Pexider functional equations). Let fi, i = 1, . . . , n, be continuous functions with
domain <+. If there is a function f such that

∑
i fi(xi) = f(

∑
xi) for all xi ≥ 0, then

there must exist constants a and b1, . . . , bn such that fi(x) = ax + bi for i = 1, . . . , n and
f(x) = ax+

∑
i bi.

Proof. A proof (which is quite elementary) can be found in Aczel [1] or in Diewert [11].

Proposition 2. Contingent utility possibility sets are parallel on F if and only if preferences
of all individuals are uniformly affine in private goods.

2Diewert [11] also notices this in his notes on functional equations.
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Proof. If y-contingent utility possibility sets are parallel, preferences of each i can be represented
by a utility function ui(xi, y), where for all allocations in UP (W, y),

∑
i ui(xi, y) = F (y). The

y-contingent utility possibility set consists of all vectors, (u1(x1, y), . . . , un(xn, y)) such that∑
i xi = W − c(y) and xi ≥ 0 for all i. It follows that if

∑
xi =

∑
x′i and xi ≥ 0 for all i, then∑

ui(xi, y) =
∑
ui(x

′
i, y). From Lemma 1, it then follows that for each y ∈ Y , the function

ui(x,y) must be of the form ui(xi, y) = A(y)xi +Bi(y).
If preferences are uniformly affine in private goods, then they can be represented by ui(xi, y) =

A(y)xi + Bi(y). The y contingent utility possibility frontier consists of all utility distribu-
tions possible with public choice y some distribution (x1, . . . , xn) of private goods such that∑n

i=1 xi = W − c(y). This is the set

{(u1, . . . , un) ≥ (B1(y), . . . , Bn(y))|
n∑
i=1

ui = A(y) (W − c(y)) +
n∑
i=1

Bi(y)}.

It follows that all y contingent utility possibility sets are parallel.

Example 1

Let there be a single public good that is desirable for both consumers. There are two possible
public choices, y and y′ where y > y′ and c(y) > c(y′). As Figure 2 shows, there are two
parallel utility possibility sets, corresponding to public choices y and y′. The y-contingent
utility possibility is the line segment EF and the y′-contingent utility possibility set is the line
segment CD. These segments are parallel with slope -1.

Figure 2: A Utility Possibility Set With Two Possible y Vectors

u1

u2

C

D

E

F

X

B1(y′) B1(y)

B2(y′)

B2(y)

The endpoints of CD and EF correspond to allocations in which all of the private goods
go to one or the other of the two consumers. The line segment CD is longer than the segment
EF because when y′ < y, there are more private goods to be distributed and hence greater
inequality of private income is possible with public choice y′ than with public choice y.

Example 2

Figure 3 shows a utility possibility set for two consumers with preferences that are uniformly
affine in private goods and where there is a continuum of possible amounts of a single public
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good. The public good is produced at constant unit cost c and the set of possible quantities is
Y = [0, y+].3 If private wealth is W , and cy < W , the y-contingent utility possibility set is a
line segment such that

u1 + u2 = F (y) = A(y) (W − c(y)) +B1(y) +B2(y) (2)

and lying between the points (F (y)−B2(y), B2(y)) and (B1(y), F (y)−B1(y)) and that corre-
spond to the utility distributions attained with y when all of the private goods are given to
consumers 1 and 2, respectively.

Figure 3: A utility possibility set with a continuum of possible y’s

u1

u2

O

C D

E
F

Let ȳ be the value of y that maximizes F (y) on the set [0, y+]. The ȳ-contingent utility
possibility set is the line segment DE in Figure 3. This line segment is tangent to the curves
OCD and OFE at its endpoints D and E. The full utility possibility set includes all points
lying between the curves OCD and OFE and below the line CD. Points in the interior of the
utility possibility set are reached with values of y < ȳ and xi > 0 for i = 1 and 2.

The utility possibility frontier, containing all of the Pareto efficient points, includes all points
on the line CD as well as all points on the curved line segments, CD and EF . The Pareto
optimal points on these curved line segments are achieved with income distributions in which
one of the two consumers receives no private goods. In this example, the highest possible utility
for Consumer 2 occurs at point C. Other points on the curve CD represent outcomes in which
Consumer 2 continues to receive all of the private goods and where increased amounts of the
public goods paid for by Consumer 2 benefit both consumers.

4 Coase independence

The notion of Coase independence, as presented by Stigler and by Hurwicz can take two possible
forms, which we will call weak Coase independence and strong Coase independence.

Let us define a public choice y to be always Pareto efficient for an economy if every feasible
allocation in which y is the public choice is Pareto optimal; no matter how the private goods
are divided. More formally:

3We have drawn this figure the case where the utility functions are u1(x1, y) = x1y + y, u2(x2, y) = x2y + y,
c(y) = y W = 9, and Y = [0, 9].
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Definition 7 (Always Pareto efficient). For an economy with a set F of feasible allocations
and a set Y of possible public variables, a public choice y∗ ∈ Y is always Pareto efficient if
every allocation {(x1, . . . , xn, y∗) ≥ 0|

∑
xi = W − c(y∗)} is Pareto optimal.

Definition 8 (Weak Coase independence). An economy with a set F of feasible allocations and
a set Y of possible public choices, satisfies weak Coase independence if there is some feasible
public choice y∗ ∈ Y that is always Pareto efficient.

In Example 1 of the previous section, the set Y has two elements, y and y′, and the utility
allocations achievable with y′ are represented by the line segment EF . In this example, y′ is
always Pareto optimal, since every feasible allocation with public choice y′ is Pareto optimal.
Thus the economy in this example satisfies weak Coase independence

Although y′ is always Pareto optimal, there are Pareto optima that can not be reached with
public choice y′. In Figure 2, the line segement CD shows the utility distributions possible
with public utility distribution y. The point X on line CD is strictly preferred by Consumer 2
to any point on EF and must be Pareto optimal.

A stronger form of Coase independence requires that there is some public choice y∗ such
that y∗ is the only Pareto optimal public choice for allocations in which every consumer receives
a positive amount of private goods.

Definition 9 (Strong Coase Independence). An economy with a set F of feasible allocations
and a set Y of possible public choices satisfies strong Coase independence if there is a unique
public choice y∗ ∈ Y such that an interior allocation is Pareto optimal if and only if the public
choice is y∗.

Proposition 3. If technology satisfies Assumption 1 and if consumer preferences are uniformly
affine in private goods, then there is weak Coase independence, and there is an always Pareto
efficient public choice y∗ ∈ Y such that F (y∗) = A(y∗) (W − c(y∗)) +

∑
iB

i(y∗) ≥ F (y) for all
y ∈ Y .

Proof of Proposition 3. Assumption 1 requires that the set Y is compact. Continuity of the
functions A(y), c(y), and Bi(y) implies that F (·) is continuous. Therefore there exists y∗ ∈ Y
such that F (y∗) ≥ F (y) for all y ∈ Y .

We next show that if
∑

i xi = W − c(y∗) and xi ≥ 0 for all i, then the allocation
(x1, . . . , xn, y

∗) is Pareto optimal. Suppose that the allocation (x′1, . . . , x
′
n, y) is Pareto su-

perior to (x1, . . . , xn, y
∗). Then it must be that A(y)x′i + Bi(y) ≥ A(y∗)xi + Bi(y∗) for all i,

with strict inequality for some i. This implies that

A(y)
∑
i

x′i +
∑

Bi(y) > A(y∗)
∑

xi +
∑

Bi(y∗) (3)

But
∑

i xi = W − c(y∗) and if (x′1, . . . , x
′
n, y) is feasible, it must also be that

∑
i x
′
i = W − c(y).

Therefore if (x′1, . . . , x
′
n, y) is feasible and Pareto superior to (x1, . . . , xn, y

∗), it must be that

F (y) = A(y) (W − c(y)) +
∑

Bi(y′) > A(y∗) (W − c(y∗)) +
∑

Bi(y∗) = F (y∗). (4)

But this is impossible, since y∗ maximizes F (·) on Y . It follows that the public choice y∗ is
always Pareto optimal.

The following corollary is immediate from Propositions 3 and 2.

Corollary 1. If technology satisfies assumption 1 and if contingent utility possibility sets are
parallel, then there is weak Coase independence.
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Proposition 3 and its corollary make no assumptions about convexity of preference or about
convexity of the set of feasible allocations, and it tells us that there is some feasible public
choice y∗, such that every distribution of private goods that is feasible with public choice y∗ is
Pareto optimal.

Example 1 shows that not every economy with weak Coase independence satisfies strong
Coase independence. However, if we add the assumptions of strict convexity of preferences and
convexity of the cost function for public choices,then there will be strong Coase independence
whenever preferences are uniformly affine in private goods.

Assumption 2 (Convexity assumption). Preferences of all consumers i are strictly convex.
The set Y is a convex set and the function c(y) is a convex function.

Proposition 4. If technology satisfies assumption 1, if utility is uniformly affine in private
goods, and if the convexity assumption 2 is satisfied, then there is strong Coase independence.

Proof of Proposition 4. According to Proposition 3, the assumption that preferences are uni-
formly affine in private goods implies that there exists a public choice y∗ ∈ Y that is always
Pareto efficient and such that

F (y∗) = A(y∗) (W − c(y∗)) +
∑
i

Bi(y∗) ≥ F (y) (5)

for all y ∈ Y . If preferences are strictly convex, then the function F (·) is strictly quasi-concave
and hence y∗ is the unique maximizer of F on the convex set Y .

We next show that any feasible interior allocation (x1, . . . , xn, y) where y 6= y∗, is Pareto
dominated by a feasible allocation with public choice y∗. If (x1, . . . , xn, y) is feasible, it must
be that

∑
xi ≤ W − c(y). Since y∗ is the unique maximizer of F (y) on Y , it follows that

F (y∗)− F (y) = δ > 0. For each i, let

x∗i =
A(y)xi +Bi(y) + δ

n
−Bi(y∗)

A(y∗)
. (6)

Then it must be that for all i,

A(y∗)x∗i +Bi(y∗)−
(
A(y)xi +Bi(y)

)
=
δ

n
> 0. (7)

For λ ∈ (0, 1), define xi(λ) = xi + λ(x∗i − xi), and y(λ) = y + λ(y∗ − y). Since the allocation
(x1, . . . , xn, y) is feasible, it must be that

∑
i xi = W − c(y). Since

∑
i x
∗
i = W − c(y∗), and

since the function c(·) is assumed to be convex, it follows that
∑

i xi(λ) ≤ W − c (y(λ)). Since
xi > 0 for all i, it follows that for λ positive but sufficiently small, xi(λ) > 0 for all i. Therefore
for sufficiently small positive values of λ, the allocation (x1(λ), . . . , xn(λ), y(λ)) is feasible.

Since preferences are assumed to be strictly convex, it must be that for all i, ui (xi(λ), y(λ)) >
ui (xi, y). Therefore the allocation (x1, . . . , xn, y) cannot be Pareto optimal. It follows that the
only Pareto optimal allocations have public choice y∗.

5 Necessary Conditions for Coase Independence

5.1 Money metric utility

We have shown that a necessary and sufficient condition for parallel y-contingent utility pos-
sibility sets is that preferences are uniformly affine in private goods. Of course, since utility
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representations are invariant to monotonic transformations, not every utility function that rep-
resents such preferences is of the appropriate affine form.

A useful diagnostic tool for determining whether preferences are uniformly affine in private
goods is the “money metric utility function,”4 defined as follows. Choose a reference public
choice vector ȳ. This reference public choice might represent a status quo public choice, but
could be chosen quite arbitrarily. The ȳ-based money metric utility function ū(·, ·) is defined so
that ū(xi, y), is the amount of private good that consumer i would need so as to be indifferent
between (xi, y) and (ūi(xi, y), ȳ).

Definition 10 (Money metric utility function). Where preferences of each consumer i are
represented by a utility function ui(xi, y), the ȳ=based money metric utility function ūi(xi, y)
is defined implicitly by the equation

ui(ūi(xi, y), ȳ) = ui(xi, y).

To ensure that the money metric utility function ū(xi, y) is well-defined, we restrict its
domain to a set of admissible outcomes.

Definition 11 (Admissible outcomes). The set of ȳ-admissible outcomes for consumer i with
preferences �i consists of all (xi, y) such that (xi, y) � (0, ȳ) and such that for some z, (z, ȳ) �
(x, y).

The set of ȳ-admissible outcomes excludes outcomes that are worse for i than having no
private goods, and having public choice ȳ. This set also excludes public outcomes y that are so
good for i that no possible amount of private wealth would compensate i for having ȳ rather
than y.

Lemma 2. Let consumer i have preferences that are strictly increasing in private goods. Pref-
erences of i on the set of ȳ admissible outcomes can be represented by a ȳ-based money metric
utility function ūi, defined by the condition

(ūi(xi, y), ȳ) ∼i (xi, y)

where ∼i denotes indifference.

Proof. Where (xi, y) is a ȳ admissible outcome for i, it must be that (xi, y) �i (0, ȳ), and
for some z > 0, (z, ȳ) �i (xi, y). Since preferences are continuous and monotone increasing
in private goods, there is exactly one real number ūi(xi, y) such that (ūi(xi, y), ȳ) ∼i (xi, y).
Since preferences are strictly increasing in private goods, it follows that ūi(xi, y) represents
preferences of i over the set of admissible outcomes.

The following proposition shows us a way to check whether a set of utility functions can
be transformed by monotonic transformations to a set of functions that are uniformly affine in
private goods.

Proposition 5. Preferences over the set of ȳ admissible outcomes are uniformly affine in
private goods if and only if for each i, the ȳ-based money metric utility function over this set
takes the functional form

ūi(xi, y) = α(y)xi + βi(y)

where α(ȳ) = 1 and βi(ȳ) = 0.

4The term “money metric” utility function was coined by Samuelson, in a classic paper.[15])
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Proof. If preferences are uniformly affine in private goods, then preferences of each i can be
represented by some utility function of the form A(y)xi + Bi(y). The definition of the money
metric utility function ū(·, ·) implies that

A(ȳ)ūi(xi, y) +Bi(ȳ) = A(y)xi +Bi(y) (8)

Rearranging terms of Equation 8, we have

ūi(xi, y) = α(y)xi + βi(y)

where

α(y) =
A(y)

A(ȳ)

and

βi(y) =
Bi(y)−Bi(ȳ)

A(ȳ)
.

It follows immediately that α(ȳ) = 1 and β(ȳ) = 0.
The converse is also true since the money metric utility function represents preferences.

5.2 Examples with and without Coase independence

Example 3–A case without Coase independence

There are two consumers and the set Y has two elements, y and y′. The line segment AB
shows the y-contingent utility possibility set and CD shows the y′-contingent utility possibility
set. Since the two lines cross, some of the allocations possible with public choice y are Pareto
dominated by allocations possible public choice y′, and some of the allocations possible with
y′ are Pareto dominated by allocations possible with public choice y. Thus, neither y nor y′ is
always Pareto optimal. Therefore this economy does not satisfy either weak or strong Coase
independence.

Figure 4: Crossing Contingent UPF’s

u1

u2

A

B

C

D
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Example 4– Coase independence without uniformly affine preferences

In this example there is strong Coase independence, but preferences are not affine in private
goods. There are two consumers and one public good. The public good can be produced
costlessly in any quantity between 0 and 2. Thus, the set of feasible allocations is

F = {(x1, x2, y)|x1 + x2 = W and y ∈ [0, 2]} .

Let preferences of each consumer i be represented by a utility function of the form

ui(xi, y) = xie
−αi(y−1)2 , (9)

where α1 > α2 > 0. From Equation 9, it follows that xi = ui(xi, y)e−αi(y−1)2 and hence the for
y ∈ [0, 2], the y-contingent utility possibility frontier is the line segment (u1, u2) ≥ 0 such that

u1e
α1(y−1)2 + u2e

α1(y−1)2 = W. (10)

The y-contingent utility possibility frontiers are illustrated in Figure 5. The y-contingent
utility possibility frontier for y = 0 satisfies the equation u1 + u2 = W and is shown by the line
AB. The y-contingent utility possibility frontiers for y 6= 0 are straight lines lying below AB
with their slopes becoming steeper as |y − 1| increases.

Figure 5: Coase independence without uniform linearity

u1

u2

A

B

It follows that the public choice y = 1 is always Pareto optimal and therefore the economy
satisfies strong Coase independence. Although there is strong Coase independence, the y-
contingent utility possibility frontiers are not parallel and preferences are not uniformly affine
in private goods.

Although the economy in Example 4 displays Coase independence when producing the public
good is costless, it turns out that if the unit cost of the public good is c > 0, there is neither
weak nor strong Coase independence. To show this, we note that any allocation (x1, x2, y)
that is an interior Pareto optimum for this economy must satisfy the ”Samuelson condition”,
equating the sum of marginal rates of substitution to the marginal cost of the public good. For
this example the Samuelson condition is

−2(y − 1) (α1x1 + α2x2) = c. (11)

The allocation (x1, x2, y) > 0 is Pareto optimal only if it satisfies Equation 11. If c > 0, then
Equation 11 is satisfied only if 0 < y < 1. If 0 < y < 1, then since α1 > α2, the sum of marginal
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rates of substitution changes when income is redistributed. Therefore any public choice that
is optimal for one income distribution is not optimal after income is redistributed. It follows
that in this case, there is no always Pareto optimal public choice. Thus the economy does not
satisfy weak Coase independence.

In this example with zero production cost there is Coase independence, although contingent
utility possibility sets are not parallel. However, if we alter the technology without changing
preferences, Coase independence fails. This example reflects a more general result, namely
that if an economy is to have Coase independence regardless of technology and costs, then it
must be that contingent utility possibility sets are parallel and hence that preferences can be
represented by utility functions that are uniformly affine in private goods.

5.3 General Coase independence

Example 4 shows that for a given set of preferences and technological possibilities, there can
be Coase independence without parallel y-contingent utility possibility sets. Proposition 2 and
Corollary 1 inform us that if preferences are uniformly affine in private goods, then there will be
weak Coase independence for every economy in which feasible technology is specified by some
continuous cost function c(y). As it turns out, for this to be the case for every such technology,
y-contingent utility possibility sets must be parallel and thus preferences must necessarily be
uniformly affine in private goods.

Definition 12 (General Coase Independence). Let ȳ ∈ Y be a reference public choice, and let Ȳ
be the set of bary-admissible public choices. A set of n consumers, with preferences �1, . . . ,�n
satisfies general Coase independence with respect to ȳ if there is weak Coase independence for
every economy in which consumers have these preferences and where the set of feasible outcomes
is

F = {(x1, . . . , xn, y) ≥ 0|
∑
i

xi = W − c(y) and y ∈ Ȳ }

where c(·) is a continuous function.

Proposition 6. Suppose that for all consumers, preferences are continuous and monotonic in
private goods, and suppose that there is general Coase independence with respect to the reference
vector ȳ. Then it must be that for all y ∈ Ȳ , the y-contingent utility possibility sets are parallel.

Proof. For each i, let ūi(xi, y) be the money metric utility function defined with reference public
choice vector ȳ. It is immediate from the definition of ui(·, ·) that ūi(xi, ȳ) = xi for all xi ≥ 0.
It then follows that for any W and any function c(y), the ȳ-contingent utility possibility set is
the set {(u1, . . . , un)|

∑
ui = W − c(ȳ)}.

Suppose that y-contingent utility possibility sets are not parallel on F̄+. Then for some ŷ
there exist two allocations (x1, . . . , xn, ŷ) and (x′1, . . . , x

′
n, ŷ) in F̄+ such that

∑
x′i =

∑
xi and∑

i ūi(x
′
i, ŷ) >

∑
i ūi(xi, ŷ).

Consider the economy with only two possible public choices ŷ and ȳ. General Coase in-
dependence requires that for any cost function, one of the two public choices ŷ or ȳ is always
Pareto optimal. Let us choose the function G(·)∑

i

ūi(x
′
i, ŷ) > G(ȳ) >

∑
i

ūi(xi, ŷ) (12)

Now the ȳ-contingent utility possibility set is {(u1, . . . , un)|
∑
ui = G(ȳ)}. Since according

to Expression 12,
∑

i ūi(x
′
i, ŷ) > G(ȳ), it must be that the public choice ȳ is not always Pareto

optimal. But since we also have G(ȳ) >
∑

i ūi(xi, ŷ), it follows that the public choice ŷ is also
not always Pareto optimal. Therefore this economy has no always Pareto optimal allocation.
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It follows that if y-contingent utility possibility frontiers are not parallel for all y ∈ Y ,
then there is not general Coase independence. Hence if there is general Coase independence,
y-contingent utility possibility frontiers must be parallel on the set of feasible allocations that
are the ȳ-extremes.

We have shown that y-contingent utility possibility frontiers are parallel if and only if
preferences can be represented by utility functions that are uniformly affine in private goods.
Thus we have the following corollary.

Corollary 2. If preferences of all consumers are continuous and y-contingent utility possibility
sets are parallel for all y ∈ Y and W > c(y), then it must be that preferences of all consumers
i can be represented by utility functions of the form

A(y)xi +Bi(y).

6 Coase independence with many private goods

So far we have considered Coase independence for economies in which, though there may be
many public goods, there is only one private good.

In a paper called “When do Market Games Have Transferable Utility?”, Bergstrom and Hal
Varian [6] found necessary and sufficient conditions for “transferable utiity” in a pure exchange
economy with many private goods and no public goods.

They defined transferable utility for an exchange economy so as to require that utility
representations could be found such that for any aggregate initial endowment ω of private
goods, the set of interior Pareto optimal utility distributions consist of all (u1, . . . , un) such
that

∑n
i=1 ui = F (ω) for some function F . In the case of two consumers, transferable utility

would mean that the utility possibility frontiers conditional on aggregate endowment vectors
ω would be parallel straight line segments all with slope -1. Bergstrom and Varian show that
when preferences are continuous, there will be transferable utility for ane exchange economy if
and only if indirect utility of each consumer i can be represented in the Gorman polar form,
v(p,mi) = α(p)mi + βi(p).

In a later paper [3], Bergstrom remarked that with many private goods and many public
goods there will be transferable utility if and only if there exist functions α(p, y) and βi(p, y)
such that when the vector of public good is y, indirect utility of each consumer i with price
vector p and income mi can be represented by a function

V (y, p,mi) = α(p, y)mi + βi(p, y). (13)

Elisabeth Gugl [12], in a paper titled “Transferable utility in the case of many private
and many public goods”, noted that Bergstrom [3] does not formally prove this assertion, but
“claims that the result is obvious by combining the Bergstrom-Varian (many private goods) and
the Bergstrom-Cornes (many public goods, one private goods) results.” After further thought,
I agree with Gugl that this result is not so obvious and that both its statement and proof
deserve clarification. Gugl and Chiappori [7] wrote a follow-up paper in which they prove that
for a price-taking household in a competitive economy, there is transferable utility within the
household if and only if all household members have indirect utility functions of the form shown
in Equation 7.

To relate the Chiappori-Gugl results to the current paper, we need to define “transferable
utility” in such a way that it coincides with the property of parallel contingent utility possibility
sets as in Definition 6. In this discussion, we will follow Chiappori and Gugle in confining our
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discussion to the “small country” case of a set of consumers who are price-takers in a competitive
economy.5

We will assume that technological possibilities satisfy the following:6

Assumption 3 (Technology with many goods). A community has k consumers, m public goods
and n private goods. There is a compact set Y ⊂ <m+ of possible public choices. There is a
competitive price vector p ∈ <n+ for private goods. There is a function c(y, p) which is convex
in y and which represents the cost of purchasing the vector y of public goods when the price
vector for private goods is p. Each individual i has initial wealth Wi > 0, and total wealth of
all community members is W =

∑
iWi.

Definition 13 (Feasible allocations contingent on p). The set of feasible allocations contingent
on price vector p is

F(p) =

{
(x1, . . . , xn, y)|(x1, . . . , xn) ≥ 0, y ∈ Y, andp

∑
i

xi = W − c(y)

}
.

We define the (y, p)-contingent utility possibility set to be the set of utility distributions
that can be achieved by possible distributions of income if the price vector is p and the vector
of public goods is y.

Definition 14. The (y, p)-contingent utility possibility frontier consists of all utility distribu-
tions (u1, . . . , uk) such that for each i, ui = ui(xi, y) such that (x1, . . . , xn, y) belongs to the set
F(p) contingent on price vector p

Definition 15 (Transferable utility with many private and many public goods). There is
transferable utility with many private and many public goods if there exist continuous utility
functions ui(xi, y) representing preferences of each consumer i such that for all y ∈ Y and for
all price vectors p > 0, the (y, p)-contingent utility possibility frontier is contained in a set of
the form

{(u1, . . . , uk)|
∑
i

ui = F (y, p)}.

Definition 16 (Extended indirect utility). The extended indirect utility function of Consumer
i is defined to be vi(p,mi, y) where vi(p, y) = maxpxi≤mi

u(xi, y),

Proposition 7. There is transferable utility with many private and many public goods if and
only if there exist continuous functions α(p, y) and βi(p, y) such that extended indirect utility
function of each consumer i can be represented by a utility function of the form

vi(p,mi, y) = α(p, y)mi + βi(p, y).

Proof. If indirect utility is representable by a utility function of the form 7, it follows that∑
vi(p,mi, y) = α(p, y)

∑
i

mi +
∑
i

βi(p, y). (14)

5In contrast, Bergstrom and Varian [6] treat a closed exchange economy, where competitive equilibrium
prices are determined by the aggregate endowment vector. This approach could be extended to an economy
with public goods, but to do so we would need to add a more detailed theory of production than is needed
under price-taking.

6Chiappori and Gugle assume that public goods are purchased at constant unit prices and hence additively
separable and linear in quantities. Our assumption generalizes this by allowing the possibility that the cost
of a bundle of public goods to be any function that is convex in y, and hence allowing the possibility of
complementarity or substitutability in the production of public goods.
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7 Applications with externalities

Here we consider two examples with Coase independence despite the presence of income effects.
In the first example, there is an externality that is offensive to the wealthy, but agreeable to
the poor. In the second example, individual citizens gain from producing an externality like
congestion, noise, or air pollution, but all suffer damages that depend on the sum of individual
actions.

7.1 Coase’s Fish and Chips

Coase [10] (p 21) described a court case in which a fried fish shop in a “predominantly working
class district was set up near houses ‘of a much better character’ ”. Occupants of these houses
sought to close the shop on grounds of the “odour and fog or mist” emitted. The judge ruled
that the shop must be moved, but could be allowed to locate near houses of less high character,
whose occupants would be likely to find that the convenience of proximity would more than
compensate for any adverse aromatic effects.

Coase’s fried fish story is clearly not consistent with quasi-linear utility, since aversion to
the smell of fish and chips is assumed to increase with income. Nevertheless, we can construct
an economy that is qualitatively similar to Coase’s fish and chips case and also exhibits strong
Coase independence.

A community has n people and a fish and chips store. Let y be the number of hours per
year that the store is open. The quantity of private goods consumed by consumer i is xi. Let
W =

∑
xi be total income and let W̄ = W/n be average per capita income of members the

community. Consumers have identical utility functions of the form

ui(xi, y) = A(y)xi +B(y), (15)

where ui(·, ·) is strictly quasi-concave and where A(y) > 0, A′(y) < 0, B′(y) > 0, and with
A′′(y) < 0 and B′′(y) < 0.

Remark 1. For the community described in the previous paragraph, there is strong Coase
independence. The greater is total income in the community, the shorter will be the Pareto
optimal number of hours for the fish shop to be open. If the number of opening hours is set at
the Pareto optimal level, then all citizens with income less average will favor longer hours and
those with income greater than average will prefer shorter hours.

Proof. Since preferences are uniformly affine in private goods and strictly convex, it follows from
Proposition 4 that there is strong Coase independence. Let W be total community income and
W̄ = W/n be mean income. income. The number of hours y∗ that is always Pareto optimal is
the value of y that maximizes

n∑
i=1

ui(xi, y) = A(y)
n∑
i=1

xi + nB(y)

= A(y)W + nB(y), (16)

Taking a derivative, we see that this expression is maximized when

− B
′(y∗)

A′(y∗))
= W̄ (17)

The assumptions that B′′(y) < 0 and A′′(y) < 0 imply that the right side of Equation 17 is
decreasing in y. It then follows that the Pareto optimal number of shop hours, y∗ is a decreasing
function of mean income.
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The derivative of Citizen i’s utility with respect to number of hours is

∂ui(xi, y
∗)

∂y
= A′(y∗)xi +B′(y∗). (18)

Since, by A(y∗) is assumed to be positive, it must be that this derivative is positive if xi > W̄
and negative if xi < barW . It follows that if the number of hours that the shop is open is
Pareto optimal, then those whose income is above the community mean wish that it would be
open fewer hours and those with income below the mean would wish it to be open for more
hours.

7.2 Congestion, Noise, and Pollution

Negative externalities often result from the actions of many individuals, each of whom benefits
from taking actions that adversely affect all others in the community. Where a community has
n residents, we model the public choice as a vector y = (y1, . . . , yn), where yi is the level of
activity by resident i.

According to Proposition 4, there is weak Coase independence if preferences of each resident
i can be represented by the functional form

ui(xi, y) = A(y)xi +Bi(y). (19)

For examples such as congested highways, cacophony in a busy restaurant, or exhaust fumes
in the air, the adverse effects imposed by individual activities can be modeled as additive, with
total damage determined by the sum, Y =

∑n
j=1 yj. Let us assume that the utility functions

in 19 take the special form

ui(xi, y) = A

(
n∑
j=1

yj

)
xi +Bi(yi)., (20)

where where the function A(·) and Bi(·) are concave and continously differentiable, with A(Y ) >
0, A′(Y ) < 0, and such that Bi(yi) is maximized at some ȳi > 0.

Assume that the community has total wealth W which can be divided in any way such that
xi > 0 for all residents i and

∑
i xi = W . It follows from Proposition 4 that this community has

strong Coase independence, and has a unique Pareto optimal solution y∗ = (y∗1, . . . , y
∗
n) such

that y∗ maximizes
n∑
i=1

ui(xi, y) = A

(
n∑
j=1

yj

)
W +

n∑
i=1

Bi(yi). (21)

Where Y ∗ =
∑n

i=1 y
∗
i , expression 21 has an interior maximum at y∗ if for all i,

B′i(y
∗
i ) = −A′(Y ∗)W (22)

Differentiating both sides of Equation 22, and rearranging terms, we find

dy∗

dW
=

−A′(y∗)
A′′(y∗)W +B′′i (y∗i )

. (23)

Since, we have assumed that A′(·) < 0 and that A(·) and Bi(·) are concave functions it follows

that
dy∗i
dW

< 0. Thus, for this community, although the Pareto optimal level of activity for each
resident is independent of income distribution, an increase in total wealth implies a lower Pareto
optimal level of activity for each resident.
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Equation 22 shows that at an efficient outcome, the marginal benefit gained from externality-
generating activity must be positive and the same for all residents. As we will see, this outcome
can be approximately achieved by means of a uniform tax rate on the activity, with tax revenue
rebated in equal shares to all residents. Much as in a large competitive economy, consumers can
reasonably neglect the effect of their own purchases on equilibrium prices, residents of a large
community, acting in their own self-interest, can neglect the effect of their own externality-
generating activity on the aggregate level. Suppose that resident i has initial wealth wi and the
externality-generating activity is taxed at the rate t, with tax revenues divided equally among
residents. Then the utility of resident i who chooses activity level yi will be

ui(xi, yi, Y
∗) = A(Y ∗)

(
wi − tyi +

∑
j tyj

n

)
+Bi(yi). (24)

The first order condition for maximization of i’s utility with respect to yi is then

A(Y ∗)t(
n− 1

n
) = B′i(y

∗
i ). (25)

It follows from Equation 22, that resident i will choose the Pareto optimal level of activity y∗i
if there is a uniform tax rate t where

t =
−A′(Y ∗)
A(Y ∗)

(
n

n− 1

)
. (26)
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