Translated Homothetic Utility and Stone-Geary Utility

Change of variables

Suppose that there are n commodities. Let $\beta^{i}=\left(\beta_{1}^{i}, \ldots, \beta_{n}^{i}\right)$ be a vector of n parameters, which may be either positive, negative, or zero. Suppose that preferences of consumer i can be represented by a strictly quasi-concave utility function of the functional form $u^{i}\left(x_{1}, \ldots, x_{n}\right)=u\left(x_{1}-\beta_{1}^{i}, \ldots, x_{n}-\beta_{n}^{i}\right)=$ $u\left(x-\beta^{i}\right)$ with domain $X^{i}=\left\{x \mid x \geq \beta^{i}\right\}$. We assume that all consumption bundles not in X^{i} are worse than any bundle in X^{i} for consumer i. Here we assume that the only differences between consumers take the form of differing $\beta^{i}{ }^{\prime}$ s.

If Consumer i can afford any bundles in X_{i}, then i 's Marshallian demand function $x^{i}\left(p, m_{i}\right)$ is found by solving the following maximization problem:
Problem A: Choose \bar{x}^{i} to maximize $u\left(x-\beta^{i}\right)$ subject to $p x \leq m_{i}, x \geq \beta^{i}$ and $x \geq 0$.

A convenient way to solve this problem is by the "substitution of variables" trick. Define $z^{i}=x-\beta^{i}$. Then, since $x=z^{i}+\beta^{i}$, Problem A can be restated as an equivalent problem:
Problem B: Choose \bar{z}^{i} to maximize $u\left(z^{i}\right)$ subject $p z^{i} \leq m_{i}-p \beta^{i}, z^{i} \geq 0$ and $z^{i} \geq-\beta^{i}$.

Translated homothetic utility and Gorman Polar form

Suppose that the function $u(z)$ is homogeneous of degree 1. Then preferences over the z vectors (but not necessarily over the x vectors) are homothetic. The solution for Problem B is then the solution to maximizing a homothetic utility subject to the constraint that income equals $m_{i}-p \beta^{i}$. Thus this solution can be written as $z\left(p, m_{i}\right)=f(p)\left(m_{i}-p \beta^{i}\right)$ (where $f(p)$ is an n vector). Since u is homogeneous of degree 1 it follows that

$$
v(p, m)=u\left(f(p)\left(m_{i}-p \beta^{i}\right)\right)=\left(m_{i}-p \beta^{i}\right) u(f(p))
$$

4 But this means that indirect utility is of the Gorman polar form $A(p) m_{i}-$ $B^{i} i(p)$ where $A(p)=u(f(p))$ and $B^{i}(p)=p \beta^{i} u(f(p))$

Stone-Geary utility

Suppose that utility of Consumer i is given by

$$
u^{i}\left(x_{1}, \ldots, x_{n}\right)=\prod_{j=1}^{n}\left(x_{j}-\beta_{j}^{i}\right)^{\alpha_{j}}
$$

where $\alpha_{j}>0$ for all i and $\sum_{j=1}^{n} \alpha_{j}=1$. If we let $z=\left(z_{1}, \ldots, z_{n}\right)$ where $z_{j}=x_{j}-\beta_{j}^{i}$, then Problem B becomes a simple Cobb-Douglas maximization problem in the $z^{\prime} s$ for a consumer with "income" $m-p \beta^{i}$

At an interior solution, we then have

$$
z_{j}^{i}=\alpha_{j}\left(\frac{m_{i}-p \beta^{i}}{p_{j}}\right) .
$$

It then follows that

$$
x_{j}^{i}=z_{j}^{i}+\beta_{j}^{i}=\alpha_{j}\left(\frac{m_{i}-p \beta^{i}}{p_{j}}\right)+\beta_{j}^{i} .
$$

We then see that that consumer i 's expenditure on good j is simply a linear function of prices and income. In particular, for each commodity j,

$$
\begin{equation*}
p_{j} x_{j}^{i}=\alpha_{j} m_{i}-\alpha_{j} \sum_{k} p_{k} \beta_{k}^{i}+\beta_{j}^{i} p_{j} . \tag{1}
\end{equation*}
$$

Consider an economy with m consumers with utility of this type. Let $M=$ $\sum_{i} m_{i}$ and $B_{j}=\sum_{i} \beta_{j}^{i}$ and let $X_{j}=\sum_{i} x_{j}^{i}$. Summing both sides of Equation 1, we have

$$
\begin{equation*}
p_{j} X_{j}=\alpha_{j} M-\alpha_{j} \sum_{k} p_{k} B_{k}+B_{j} p_{j} \tag{2}
\end{equation*}
$$

You can see why this formulation would be popular with people who like to run regressions. On the left side we have aggregate expenditure on good j and on the right side we have the variables aggregate income and the prices of each good. The regression coefficients that are estimated are then the parameters α_{j}, and the B_{k} 's. The system of equations that one gets by applying Equation 2 for each of the n goods is known as the linear expenditure systerm or sometimes as the Stone-Geary systerm.

An example

A consumer has income m and utility function

$$
\left(x_{1}+1\right)^{1 / 2}\left(x_{2}-1\right)^{1 / 2}
$$

defined on the set $X=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geq 0, x_{2}>1\right\}$. This is a Stone-Geary utility with $\beta_{1}=-1$ and $\beta_{2}=1$. If we set $z_{1}=x_{1}+1$ and $z_{2}=x_{2}-1$, then $x_{1}=z_{1}-1$ and $x_{2}=z_{2}+1$. We can restate the consumer's maximization problem in terms of the z 's as follows: Chooses z_{1} and z_{2} to maximize

$$
z_{1}^{1 / 2} z_{2}^{1 / 2}
$$

subject to the constraint that $p_{1}\left(z_{1}-1\right)+p_{2}\left(z_{2}+1\right)=m$ or equivalently,

$$
p_{1} z_{1}+p_{2} z_{2}=m+p_{1}-p_{2}
$$

At a constrained maximum interior to the set X, it must be that

$$
z_{i}=\frac{m+p_{1}-p_{2}}{2 p_{i}}
$$

Then it must be that

$$
x_{1}=z_{1}-1=\frac{m-p_{1}-p_{2}}{2 p_{1}}
$$

and

$$
x_{2}=z_{2}+1=\frac{m+p_{1}+p_{2}}{2 p_{2}} .
$$

But these two equations are the quantities demanded only if $\left(x_{1}, x_{2}\right)$ is in the interior of the set X. Now $x_{1}=z_{1}-1=\frac{m-p_{1}-p_{2}}{2 p_{1}} \geq 0$ if and only if $m \geq p_{1}+p_{2}$. and $x_{2}>1$ if and only if $m+p_{1}+p_{2}>2 p_{2}$, or equivalently, $m>p_{2}-p_{1}$. For all $p_{1}>0$, we have $p_{1}+p_{2}>p_{2}-p_{1}$. Therefore there will be an interior solution if and only if $m>p_{1}+p_{2}$.

If $p_{1}+p_{2}>m>p_{2}-p_{1}$, there will be a corner solution in which $x_{1}=0$ and $x_{2}=m / p_{2}$. If $m<p_{2}-p_{1}$, the consumer can not afford any bundles in X.

