Quasi-concave functions and concave functions.

- If f is concave, then it is quasi-concave, so you might start by checking for concavity.
- If f is a monotonic transformation of a concave function, it is quasi-concave. This also means that if a monotonic transformation of f is concave, then f is concave.
- Example: Check whether the $f(x, y)=x y+x^{2} y^{2}+x^{3} y^{3}$ defined on \Re_{+}^{2} is quasiconcave. Note that $f(x)=g(u(x, y))$ where $u(x, y)=x y$ and $g(z)=z+z^{2}+z^{3}$. Since $g^{\prime}>0, f$ is quasi-concave if and only if u is quasi-concave. But $u(x, y)=e^{v(x, y)}$ where $v(x, y)=\ln x+\ln y$. The function v is easily seen to be concave. So then

$$
f(x)=g(u(x, y))=g\left(e^{v(x, y)}\right)
$$

is a monotone increasing function of a concave function and hence is quasi-concave.

Necessary condition for quasi-concave function.

- Let f be a twice continuously differentiable function of n real variables. The bordered Hessian matrix of f looks like this.

$$
H(x)=\left[\begin{array}{ccccc}
0 & f_{1}(x) & f_{2}(x) & \ldots & f_{n}(x) \\
f_{1}(x) & f_{11}(x) & f_{12}(x) & \ldots & f_{1 n}(x) \\
f_{2}(x) & f_{21}(x) & f_{22}(x) & \ldots & f_{2 n}(x) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
f_{n}(x) & f_{n 1}(x) & f_{n 2}(x) & \ldots & f_{n n}(x)
\end{array}\right]
$$

- A necessary condition for f to be a quasi-concave function is that the even-numbered principle minors of the bordered Hessian be non-negative and the odd-numbered principle minors be non-positive.
- A sufficient condition for f to be quasi-concave is that the even-numbered principle minors of the bordered Hessian be strictly positive and the odd-numbered principle minors be strictly negative.

Supporting hyperplane theorem

- If X is a convex subset of \Re^{n} and x_{0} is a point in the boundary of X, then there exists a non-zero vector $p \in \Re^{n}$ such that $p x \geq p x_{0}$ for all $x \in X$.
- Suppose preferences are convex. Then $X=\succeq\left(x_{0}\right)$ is a convex set. If preferences are monotonic, then x_{0} is on the boundary of X. Then according to the theorem, there is some p such that if $x \succeq x_{0}$, then $p x \geq p x_{0}$.

Separating hyperplane theorem

- If X and Y are disjoint, non-empty convex subsets of \Re^{n}, then there exists a non-zero vector $p \in \Re^{n}$ and a scalar b such that $p x \geq b$ for all $x \in X$ and $p y \geq b$ for all $x \in Y$.

