CES Problems, November 2007

1) There are two factors and the production function is

$$
F\left(x_{1}, x_{2}\right)=\operatorname{Min}\left\{\frac{x_{1}}{a_{1}}, \frac{x_{2}}{a_{2}}\right\}
$$

A) Draw the unit isoquant in the x_{1}, x_{2} plane.
B) Calculate $x\left(w_{1}, w_{2}, 1\right)$ and $c\left(w_{1}, w_{2}, 1\right)$ where $x\left(w_{1}, w_{2}, 1\right)=\left(x_{1}\left(w_{1}, w_{2}, 1\right), x_{2}\left(w_{1}, w_{2}, 1\right)\right)$ is the conditional factor demand for producing one unit and $c\left(w_{1}, w_{2}, 1\right)$ is the minimum cost of producing one unit.
C) Verify that Shepherd's lemma holds in this case.
2) There are two factors and the production function is

$$
F\left(x_{1}, x_{2}\right)=\operatorname{Max}\left\{\frac{x_{1}}{a_{1}}, \frac{x_{2}}{a_{2}}\right\}
$$

A) Draw the unit isoquant in the x_{1}, x_{2} plane.
B) Find $x\left(w_{1}, w_{2}, 1\right)$ and $c\left(w_{1}, w_{2}, 1\right)$.
3) There are two factors and the production function is

$$
F\left(x_{1}, x_{2}\right)=a_{1} x_{1}+a_{2} x_{2}
$$

A) Draw the unit isoquant in the x_{1}, x_{2} plane.
B) Calculate $x\left(w_{1}, w_{2}, 1\right)$ and $c\left(w_{1}, w_{2}, 1\right)$.
4) There are two factors and the production function is

$$
F\left(x_{1}, x_{2}\right)=x_{1}^{1 / 2} x_{2}^{1 / 2}
$$

A) Calculate the ratio of the marginal products of factors 1 and 2.
B) Calculate $x\left(w_{1}, w_{2}, 1\right)$ and $c\left(w_{1}, w_{2}, 1\right)$.
C) Verify that Shepherd's lemma holds in this case.
5) There are two factors and the production function is

$$
F\left(x_{1}, x_{2}\right)=\frac{1}{\frac{1}{x_{1}}+\frac{1}{x_{2}}} .
$$

A) Show that this is production belongs to the CES family. What is the elasticity of substitution in this case?
B) Calculate $x\left(w_{1}, w_{2}, 1\right)$ and $c\left(w_{1}, w_{2}, 1\right)$.
C) Suppose that a competitive firm faces the wages w_{1}, w_{2}) for its inputs. How does the ratio of "factor shares"

$$
\frac{w_{1} x_{1}\left(w_{1}, w_{2}, 1\right)}{w_{2} x_{2}\left(w_{1}, w_{2}, 1\right)}
$$

vary with the ratio w_{1} / w_{2} ?
5) There are two factors and the production function is

$$
F\left(x_{1}, x_{2}\right)=\left(x_{1}^{1 / 2}+x_{2}^{1 / 2}\right)^{2} .
$$

A) Show that this is production belongs to the CES family. What is the elasticity of substitution in this case?
B) Calculate $x\left(w_{1}, w_{2}, 1\right)$ and $c\left(w_{1}, w_{2}, 1\right)$.
C) Suppose that a competitive firm faces the wages $\left(w_{1}, w_{2}\right)$ for its inputs. How does the ratio of "factor shares"

$$
\frac{w_{1} x_{1}\left(w_{1}, w_{2}, 1\right)}{w_{2} x_{2}\left(w_{1}, w_{2}, 1\right)}
$$

vary with the ratio w_{1} / w_{2} ?

