Name \qquad

Midterm Examination: Economics 210A

November 6, 2015
There are 3 questions. Use the attached blank pages to make calculations. For Questions 1 and 2, enter your answers and any clarifications on the front 3 pages.

Question 1.) A consumer has the utility function

$$
u\left(x_{1}, x_{2}\right)=\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)^{-k}
$$

where $0<k<1$.
A) What is the elasticity of substitution of this function?
B) Find this consumer's Marshallian demand functions for Goods 1 and 2.
C) Find this consumer's indirect utility function.
D) Find this consumer's expenditure function.

Question 2.) A) A competitive firm has the production function

$$
f\left(x_{1}, x_{2}\right)=\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)^{-k}
$$

where $0<k<1$. The price of its output is p and the firm faces factor prices $\left(w_{1}, w_{2}\right)$. What is this firm's cost function.
B) Suppose that for this firm, $k=1 / 2$. Suppose also that the firm faces factor prices $w_{1}=1$ and $w_{2}=4$ and the price it gets for its output is $p=90$. What is its cost function? How many units should it produce to maximize its profits?

Question 3.) The function $f\left(x_{1}, \ldots, x_{n}\right)$ is continuously differentiable and homogeneous of degree k. Let

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}}
$$

and let

$$
f_{i j}\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial^{2} f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i} \partial x_{j}}
$$

A) Is the function $f_{i}\left(x_{1}, \ldots, x_{n}\right)$ homogeneous of some degree? If so, what degree. Prove your answer.
B) Are the functions $f_{i j}\left(x_{1}, \ldots, x_{n}\right)$ homogeneous of some degree? If so, what degree. Prove your answer
C) Let $G\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} f_{i}\left(x_{1}, \ldots, x_{n}\right)$. Given that f is homogeneous of degree k, what can we say in general about the ratio $G\left(x_{1}, \ldots, x_{n}\right) / f\left(x_{1}, \ldots, x_{n}\right)$. Prove your answer.

