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If you tried this problem in your homework, you learned from painful experi-
ence that the Hessian conditions for concavity of the Cobb-Douglas function

F (x1, . . . xn) =
n∏
i=1

xαi
i

from <n+ to < are cumbersome to work with, when n ≥ 3. Maybe you were
thinking “There must be an easier way.” Well, there is. Indeed there is more
than one other way to skin this cat, but the way that I will show you here
is instructive and in the process you will pick up a couple of useful tools.

It turns out that the function F is a concave function if αi ≥ 0 for all i
and

∑n
i=1 αi ≤ 1.

I propose the following road to a proof.
We first note the following:

Lemma 1. The function defined by

F (x1, . . . xn) =
n∏
i=1

xαi
i

is homogeneous of degree
∑n
i=1 αi.

You should be able to supply the proof of this lemma.

We next note that F is quasi-concave. To show this, we make use of the
fact that any monotone increasing transformation of a concave function is
quasi-concave.

Lemma 2. A function F is quasi-concave if h(x) = g(F (x)) is a concave
function for some strictly increasing function g from < to <.

You should be able to prove this. First show that if h is concave, then h
must also be quasi-concave. Then show that a monotone increasing function
of a quasi-concave function must be quasi-concave.

Suppose we let g(x) = lnx and h(x) = g(F (x) = lnF (x) =
∑n
i=1 αi lnxi.

You should be able to show that
∑n
i=1 αi lnxi is a concave function. (For this

one, the Hessian second-order condition is really easy. The off-diagonals of
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the Hessian matrix are zeros.) Therefore F (x) is a monotone transformation
of a concave function and hence must be concave.

Theorem 1 is an important result to know about. For our application, it
tells us that the Cobb-Douglas function F is a concave function if

∑
i αi = 1.

Theorem 1. Let f be a real-valued function defined on <n+ (the nonnega-
tive orthant in Euclidean n-space) and suppose that f is quasi-concave and
homogeneous of degree 1. Then f is a concave function.

Proof. Suppose that f is quasi-concave and homogeneous of degree 1. Con-
sider any two points x and x′ in <n+. Since f is homogeneous of degree 1, it
must be that

f

(
x

f(x)

)
=

1
f(x)

f(x) = 1

and

f

(
x′

f(x′)

)
=

1
f(x′)

f(x′) = 1.

Since f is quasi-concave, it must be that for all θ such that 0 < θ < 1,

f

(
θ
x

f(x)
+ (1− θ) x′

f(x′)

)
≥ min

{
f

(
x

f(x)

)
, f

(
x′

f(x′)

)}
= 1. (1)

For any t such that 0 < t < 1, let

θ =
tf(x)

tf(x) + (1− t)f(x′)
.

Then

1− θ =
(1− t)f(x′)

tf(x) + (1− t)f(x′)
.

Substituting these expressions for θ and 1− θ into the inequality 1, we have
the inequality

f

(
tx+ (1− t)x′

tf(x) + (1− t)f(x′)

)
≥ 1 (2)

Since f is homogeneous of degree 1, it follows

f

(
tx+ (1− t)x′

tf(x) + (1− t)f(x′)

)
=

1
tf(x) + (1− t)f(x′)

f(tx+ (1− t)x′)

and therefore the inequality 2 implies that

f(tx+ (1− t)x′) ≥ tf(x) + (1− t)f(x′).

which means that f is a concave function.
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What if 0 <
∑
αi < 1? Theorem 2 gives you the tool you need to handle

this case.

Theorem 2. Let f be a real-valued function defined on a convex set X
in Rn and let g be an increasing concave function from the < to <. Let
h(x) = f(g(x)). Then h(x) is a concave function.

Proof. If f is a concave function, then for any t such that 0 < t < 1 and for
any x and x′ in X,

f(tx+ (1− t)x′) ≥ tf(x) + (1− t)f(x′). (3)

Since g is an increasing function, it follows from inequality 3 that

g
(
f(tx+ (1− t)x′)

)
≥ g

(
tf(x) + (1− t)f(x′)

)
. (4)

Since g is a concave function, it must be that

g
(
tf(x) + (1− t)f(x′)

)
≥ tg (f(x)) + (1− t)g

(
f(x′)

)
. (5)

Combining the inequalities 3 and 5, we have

g
(
f(tx+ (1− t)x′)

)
≥ tg (f(x)) + (1− t)g

(
f(x′)

)
(6)

Recalling the definition of h, we see that the inequality 6 can be written as

h
(
tx+ (1− t)x′) ≥ th(x) + (1− t)h(x′). (7)

But the inequality 7 is the condition for h to be a concave function.

How does Theorem 2 help? Let k =
∑
αi. We can verify that the Cobb-

Douglas function F must be homogeneous of degree k. Define H(x) =
F (x)1/k. We note that H is homogeneous of degree 1 and quasi-concave.
Therefore H is homogeneous of degree 1. From Theorem 1 we know that H
is concave. Now F (x) = g(H(x)) where g(y) = yk. The second-derivative
test shows us that g is a concave function. So it follows from Theorem 2
that F is a concave function.

There we are.
This proof was kind of a long road, but I think a very instructive one.

Everything that you learned along the way is likely to come in handy some
day.

A final remark

I leave it to you to show that if
∑
i αi > 1, then F is neither concave nor

convex.
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