Rooftop Theorem for Concave functions

This theorem asserts that if f is a differentiable concave function of a single variable, then at any point x in the domain of f, the tangent line through the point $(x, f(x))$ lies entirely above the graph of f. You should draw a picture.

Theorem 1. If f is a continuously differentiable concave function of a single variable, defined on a real interval I, then for all x_{1} and x_{2} in I,

$$
f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f^{\prime}\left(x_{1}\right) \geq f\left(x_{2}\right)
$$

Geometrically, this theorem says that the tangent line to the graph of f passing through any point $\left(x_{1}, f\left(x_{1}\right)\right)$ must lie entirely on or above the graph of f. You should draw a couple of pictures to convince yourself of this geometry.

Proof. Since f is a concave function, it must be that for all x_{1} and x_{2} in I, and all $t \in[0,1]$,

$$
\begin{equation*}
f\left((1-t) x_{1}+t x_{2}\right) \geq(1-t) f\left(x_{1}\right)+t f\left(x_{2}\right) \tag{1}
\end{equation*}
$$

Rearranging terms, we see that Equation 1 is equivalent to

$$
\begin{equation*}
f\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)-f\left(x_{1}\right) \geq t\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) . \tag{2}
\end{equation*}
$$

Dividing both sides of equation 2 by t, we have

$$
\begin{equation*}
\frac{f\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)-f\left(x_{1}\right)}{t} \geq f\left(x_{2}\right)-f\left(x_{1}\right) \tag{3}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\left(x_{2}-x_{1}\right) \frac{f\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)-f\left(x_{1}\right)}{t\left(x_{2}-x_{1}\right)} \geq f\left(x_{2}\right)-f\left(x_{1}\right) \tag{4}
\end{equation*}
$$

Then it must be that

$$
\begin{equation*}
\left(x_{2}-x_{1}\right) \lim _{t \rightarrow 0} \frac{f\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)-f\left(x_{1}\right)}{t\left(x_{2}-x_{1}\right)} \geq f\left(x_{2}\right)-f\left(x_{1}\right) \tag{5}
\end{equation*}
$$

But then we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{f\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)-f\left(x_{1}\right)}{t\left(x_{2}-x_{1}\right)}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}=f^{\prime}\left(x_{1}\right) \tag{6}
\end{equation*}
$$

It follows that:

$$
\begin{equation*}
\left(x_{2}-x_{1}\right) f^{\prime}\left(x_{1}\right) \geq f\left(x_{2}\right)-f\left(x_{1}\right) \tag{7}
\end{equation*}
$$

Rearranging Equation 8, we have the desired result, namely

$$
\begin{equation*}
f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f^{\prime}\left(x_{1}\right) \geq f\left(x_{2}\right) \tag{8}
\end{equation*}
$$

Now an easy and important consequence of the Rooftop Theorem is the following.

Theorem 2. If f is a continuously differentiable function of a single variable, defined on a real interval I, then f is a concave function if and only if $f^{\prime \prime}(x) \leq 0$ for all $x \in I$.

One proof of this theorem is to apply Taylor's theorem and the Rooftop theorem. (Hint: Write the exact form of the second order Taylor's expansion.)

Here is another proof. Suppose that f is a concave function. Choose any two points x and y in I such that $x>y$. The Rooftop Theorem implies that $f(x)-f(y) \leq f^{\prime}(y)(x-y)$ and also $f(y)-f(x) \leq f^{\prime}(x)(y-x)$. The second inequality is equivalent to $f(x)-f(y) \geq f^{\prime}(x)(x-y)$. It follows that $f^{\prime}(x)(x-$ $y) \leq f(x)-f(y) \leq f^{\prime}\left(y(x-y)\right.$ and hence that $f^{\prime}(x) \leq f^{\prime}(y)$ whenever $x>y$. But this means that f^{\prime} is a non-increasing function and hence $f^{\prime \prime}(x) \leq 0$ for all $x \in I$.

A similar argument establishes the converse.

