Rooftop Theorem for Concave functions

This theorem asserts that if f is a differentiable concave function of a single
variable, then at any point x in the domain of f, the tangent line through the
point (z, f(x)) lies entirely above the graph of f. You should draw a picture.

Theorem 1. If f is a continuously differentiable concave function of a single

variable, defined on a real interval I, then for all x1 and x4 in I,

f(@1) + (z2 — 21) f'(x1) > f(22).

Geometrically, this theorem says that the tangent line to the graph of f
passing through any point (z1, f(21)) must lie entirely on or above the graph of
f. You should draw a couple of pictures to convince yourself of this geometry.

Proof. Since f is a concave function, it must be that for all 7 and x5 in I, and

all t € [0,1],
FUU =)y +tas) > (1 =) f(z1) + tf(x2).

Rearranging terms, we see that Equation 1 is equivalent to
[ @1+ t(ze —21)) = f21) 2 t(fz2) = f(21)).

Dividing both sides of equation 2 by t, we have

f(x1+t(we — 1)) — f(21)

; > f(x2) — f(z1)

This implies that

f (w1 +t(ze —71)) — f(71)

t(xg — 1’1)

> f(x2) — f(x1)

(z2 — 1)

Then it must be that

(s =) iy LR T > ) — st

But then we have

i (1 +t(ze —21)) — flan) _
t—0 t(zg — x1) h—0

It follows that:
(22 —21) f'(21) > f(22) — f(1).

Rearranging Equation 8, we have the desired result, namely

f(@1) + (x2 — 21) f'(21) > f(22).
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Now an easy and important consequence of the Rooftop Theorem is the
following.

Theorem 2. If f is a continuously differentiable function of a single variable,
defined on a real interval I, then f is a concave function if and only if f"(x) <0
forallx € 1.

One proof of this theorem is to apply Taylor’s theorem and the Rooftop
theorem. (Hint: Write the exact form of the second order Taylor’s expansion.)

Here is another proof. Suppose that f is a concave function. Choose any
two points  and y in I such that x > y. The Rooftop Theorem implies that
f(@) = f(y) < F'(y)(x —y) and also f(y) — f(x) < f'(x)(y — o). The second
inequality is equivalent to f(z) — f(y) > f'(z)(x —y). It follows that f'(z)(x —
y) < f(z) - f(y) < f'(y(x — ) and hence that f'(z) < f'(y) whenever z >y .
But this means that f’ is a non-increasing function and hence f”(z) < 0 for all
xel.

A similar argument establishes the converse.



