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1 Introduction

Expected utility theory has a remarkably long history, predating Adam Smith
by a generation and marginal utility theory by about a century.1 In 1738,
Daniel Bernoulli wrote:

“Somehow a very poor fellow obtains a lottery ticket that will
yield with equal probability either nothing or twenty thousand
ducats.2 Will this man evaluate his chance of winning at ten
thousand ducats? Would he not be ill-advised to sell this lottery
ticket for nine thousand ducats? To me it seems that the answer
is in the negative. On the other hand I am inclined to believe
that a rich man would be ill-advised to refuse to buy the lottery
ticket for nine thousand ducats.”

“. . . the determination of the value of an item must not be
based on its price, but rather on the utility it yields. The price
of the item is dependent only on the thing itself and is equal
for everyone; the utility, however, is dependent on the particular
circumstances of the person making the estimate. Thus there is
no doubt that a gain of one thousand ducats is more significant to
a pauper than to a rich man though both gain the same amount.”

1Even when Cournot (1838), Gossen (1858) developed recognizably utility theory in
the mid nineteenth century, they gained little attention for at least another half century.

2A ducat contained 3.5 grams of gold. I believe that at the time, a ducat was worth
about 1/2 of an English pound sterling. English laborers earned about 20 pounds per
year. So annual earnings for a poor fellow might be 40 ducats. If this is the case, 20,000
ducats would be 500 times the annual earnings of a poor fellow. TB
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“If the utility of each possible profit expectation is multiplied
by the number of ways in which it can occur, and we then divide
the sum of these products by the total number of possible cases, a
mean utility [moral expectation] will be obtained, and the profit
which corresponds to this utility will equal the value of the risk
in question.”

Another remarkable feature of Bernoulli’s discussion is his focus on human
capital and wealth rather than just current income. Bernoulli proposes that
the utility function used to evaluate gambles should be a function of one’s
wealth, and not just current income flows.

Bernoulli’s suggests a form for the utility function stated in terms of
a differential equation. In particular, he proposes that marginal utility is
inversely proportional to wealth. Thus we have

du(W )

dW
=

a

W
.

for some constant a. We can solve this differential equation to find the
function u. In particular, we must have

u(W ) = a lnW + b

for some constants a and b.
Bernoulli points out that with this utility function, people will be risk

averse. Moreover, one’s willingness to pay for the poor fellow’s lottery ticket
depends on one’s initial wealth.

To see the power of Bernoulli’s model, let us try some calculations:

Exercise:A) Calculate the wealth of the poorest fellow with logarithmic
utility who would buy this ticket for 9000 ducats.

Let X be the fellow’s wealth. He is just indifferent between buying the
ticket for $9, 000 or not buying it if

a lnX + b =
1

2
(a ln (X + 20, 000− 9, 000) + b) +

1

2
(a ln (X − 9, 000) + b) .

This expression simplifies to

lnX =
1

2
ln (X + 11, 000) +

1

2
ln (X − 9, 000).
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Exponentiating both sides we have

X =
√
X + 11, 000

√
X − 9, 000

Squaring both sides we have

X2 = X2 + 2, 000X − 99, 000, 000.

Solving for X, we have X = 49, 500 ducats.
Notice that the answer is independent of the parameters a and b. This

is no surprise since risk behavior is independent of affine transformations of
the Bernoulli utility function. So the answer is the same as if the Bernoulli
utility function were just lnX.

B) Calculate the wealth of the richest fellow who would be willing to sell
this ticket for 9,000 ducats. Is the answer the same as the answer to A? If
not, can you explain why not?

Suppose that this guy has X safely invested in addition to the ticket. Then
if he sells the ticket, his wealth will be X + 9, 000 with certainty. If he keeps
the ticket, his wealth is equally likely to be X + 20, 000 and X. He will be
indifferent about selling the ticket if

ln (X + 9, 000) =
1

2
ln (X + 20, 000) +

1

2
lnX

Exponentiating this and squaring it, we have

(X + 9, 000)2 = X2 + 20, 000X.

Simplifying this gives us

81, 000, 000 = 2, 000X

and therefore X = 40, 500. Notice that if he sells the ticket, his wealth with
certainty will be the same as that of the fellow in Part A.

C) If Bernoulli’s poor fellow has wealth of 25 ducats, calculate the lowest
price at which he would be willing to sell the lottery ticket.

If he sells at price P , his wealth will be P + 25 with certainty. If he does
not sell, his wealth will be 20, 025 with probability 1/2 and 25 with probability
1/2. He is indifferent about selling if

ln (P + 25) =
1

2
ln 20025 +

1

2
ln 25.
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Exponentiate and square both sides to find

(P + 25)2 = 20025× 25.

So P + 25 =
√

20025× 25 = 225 and P = 687.55.
Since the expected value of the ticked is 10,000 ducats, he is willing to

sell for less than 7% of the expected value. Does this suggest how venture
capitalists might get rich?

1.1 The Saint Petersburg Paradox

Daniel Bernoulli’s cousin, Nickolaus (1687-1759) posed a problem which has
come to be known as the St. Petersburg paradox.

“Peter tosses a coin and continues to do so until it should
land ”heads” when it comes to the ground. He agrees to give
Paul one ducat if he gets ‘heads’ on the very first throw, two
ducats if he gets it on the second, four if on the third, eight if
on the fourth, and so on, so that with each additional throw the
number of ducats he must pay is doubled. Suppose we seek to
determine the value of Paul’s expectation.

My aforementioned cousin discussed this problem in a letter
to me asking for my opinion. Although the standard calculation
shows that the value of Paul’s expectation is infinitely great, it
has, he said, to be admitted that any fairly reasonable man would
sell his chance, with great pleasure, for twenty ducats.”

–passage from Daniel Bernoulli’s paper

The expected value of winning this lottery is

∞∑
t=1

2t−1
1

2t
=∞.

Daniel Bernoulli suggests that the actual value of this lottery to a person
with wealth x will be ∞∑

t=1

ln (x+ 2t−1)
1

2t
.

This series can be shown to converge to a finite quantity.
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It has been pointed out that Bernoulli’s solution would not work for a
lottery in which the price for a run of t heads is e2

t
. In this case, the expected

utility of someone whose only asset is this this lottery would be

∞∑
t=1

ln e2
t 1

2t
=
∞∑
t=1

2t

2t
=∞

This difficulty could be conquered by assuming that the Bernoullian util-
ity function is bounded from above. (Note that a function can be always
increasing and still bounded.) If u(x) ≤ b for all x, then

∞∑
t=1

u(x)
1

2t−1
≤ b

∞∑
t=1

1

2t−1
= b.

2 Constructing Expected Utility Functions

2.1 Contingent Commodity Approach

Let us follow Bernoulli’s suggestion of dividing the possible events into a
large number of equally likely events and considering preferences over lot-
teries that assign a specific prize to each possible event. Let the events be
e1, . . . , en where the probability of each event is 1/n. Let x(ei) be the vector of
commodities that one would receive contingent on event i happening. These
will be called contingent commodities. Then a vector x = (x(e1), . . . , x(en))
specifies the prizes that you would win in each possible outcome. Let us sup-
pose that a decision maker has continuous, transitive preferences over these
events and that these preferences are additively separable. Then preferences
of this consumer could be represented by a utility function of the form

U(x) =
n∑
i=1

ui(x(ei)).

The separability assumption requires that how you rank two alternative
lotteries that differ only in what happens in one compound event does not
depend on what would happen if the outcome is not in this compound event.

We assume that the events are preference neutral in the sense that one has
no intrinsic interest in which event happens, but only in the prize associated
with the event. (This is like outcomes on a toss of a coin or roll of a die and
not like health outcomes.) Since the events are equally likely, we also assume
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that you are indifferent if you swap the outcomes of any two events. Then
there ui’s could all be the same function and utility could be represented by
a utility of the form

U(x) =
1

n

n∑
i=1

u(x(ei)).

The function u(·) is known as the von Neumann-Morgenstern utility function
or expected utility function.

Events with (rational) unequal probabilities can be broken up into equal
size pieces. So the utility of bundle x with probability k/n and bundle y with
probability 1− k/n is

k

n
u(x) +

n− k
n

u(y) = pu(x) + (1− p)u(y).

Since additively separable representations are unique up to affine trans-
formations, the von Neumann-Morgenstern utilities are also uniquely deter-
mined up to affine transformations.

2.2 Another Way to Construct Expected Utility

Assume that preferences are continuous, transitive and complete over lotter-
ies. We will show how to construct a utility function over a set of outcomes
whose “utilities” range between a best outcome and a worst one. These
might not be the best and worst imaginable, but just the top and bottom
of the range of desirability of things that you are able and willing to think
about.

Assign utilities to the best outcome and the worst outcome so that U(best) =
100 and U(worst) = 0. Let U of any lottery be the probability mix of best
and worst outcomes that is indifferent to that lottery.

Define a simple gamble to consist of a finite number n of possible prize
bundles, a1 . . . , an such that with probability pi you get prize bundle i.

Axioms: Assume that preferences on gambles are
1) Complete
2) Transitive a1 ≺ a2, . . . ,≺ an
3) Continuous. For any gamble g, there is some p such that g ∼ pan +

(1− p)a1.
4) Monotonic: If a > b, then getting best bundle with probability a and

worst with probability (1 − a) is preferred to best with probability b and
worst with probability (1− b).
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5) Substitution If for each outcome, you are indifferent between the prize
you get in lottery g and the prize you get in lottery h, then you are indifferent
between g and h.

6) Reduction to Simple gambles: You care only about the probabilities
and the prizes and not on the way that gambles might be compounded.

With these axioms, preferences on gambles are representable by a von
Neumann-Morgenstern utility.

The utility of outcome x is determined as follows: If getting x for sure is
indifferent to a gamble in which you get best with probability p and worst
with probability 1− p, then

u(x) = pU(best) + (1− p)U(worst).

(Lecturer’s aside: Constructing your own utility under this procedure would
be psychologically taxing and probably unreliable if best were truly fantastic
and worst almost unimaginably terrible.)

Let us show that utility constructed in this way is unique up to affine
transformations: Suppose that u and v are two alternative von Neumann-
Morgenstern utility functions that represent the same preferences over lotter-
ies. For any x such that worst � x � best, there is some p such that having
x for sure is indifferent to having best with probability p and worst with
probability 1 − p. Then since u and v both represent the same preferences,
it must be that

u(x) = pu(best) + (1− p)u(worst)

and
v(x) = pv(best) + (1− p)v(worst)

with the same p in either case. Rearranging terms, we find that

u(x)− u(worst)

u(best)− u(worst)
=

v(x)− v(worst)

v(best)− v(worst)
= p.

But this implies that

u(x)− u(worst) =
u(best)− u(worst)

v(best)− v(worst)
(v(x)− v(worst))

and hence
u(x) = Av(x) +B
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where

A =
u(best)− u(worst)

v(best)− v(worst)

and
B = u(worst)− Av(worst).

We see that A and B are constants and so u is an affine transformation of v.

2.2.1 Cardinal measurement of temperature: an analogy

We have shown how to define von Neumann-Morgenstern utility by equiva-
lence to a probability mix of a “best” and a “worst” prospect. It is instructive
to think of an analogous procedure for measuring water temperature, where
we use physical mixtures rather than probability mixtures. Let us consider
temperatures between the freezing point and the boiling point of water. Let
us assign a ”Celsius temperature” of zero to the freezing point and 100 to the
boiling point. Suppose that we can always tell when two pots of water are
at the same temperature. Take any pot x of water and find the proportions
of p(x) of boiling water and 1 − p(x) of just-about-to-freeze water that you
would need to get a pot of water of the same temperature as your original.
Then define the Celsius temperature of the water in pot x to be

C(x) = p(x)100 + (1− p(x))0.

Alternatively, you could define a Fahrenheit temperature where boiling wa-
ter is 212 degrees and freezing water is 32 degrees. Then the Fahrenheit
temperature of the water in your pot is

F (x) = p(x)212 + (1− p(x))32.

For any pot of water, the proportions of boiling and freezing water needed
to match the temperature of your original pot is the same regardless of the
temperatures that you assign to boiling and freezing water. How are the
Celsius and Fahrenheit temperatures related? If we rearrange Equation 2.2.1,
we find that

p(x) =
C(x)

100
and if we rearrange Equation 2.2.1, we see that that

p(x) =
F (x)− 32

180
.
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From Equations 2.2.1 and fp it follows that

C(x)

100
=
F (x)− 32

180

or equivalently,

C(x) =
5

9
(F (x)− 32) =

5

9
F (x)− 160

9
.

Thus temperatures in Fahrenheit and Centigrade are affine transformations
of each other.

The analogy to our second method of constructing expected utility is
close. Let the temperature of water at the boiling point correspond to u(best)
and the temperature of water at the freezing point correspond to u(worst).
We measure the temperature of a specified object as 100 times the fraction
p of boiling water in a mix of boiling and freezing water that is exactly as
warm as the object. We measure a person’s Bernoulli utility of an outcome
x as the probability p such that this person is indifferent between having the
outcome x for sure and having a probability of p of getting the best outcome
and 1− p as the worst outcome.

You will notice that the method we have discussed for measuring temper-
ature only works for temperatures between the freezing point and the boiling
point of water. To cardinalize more extreme temperatures, we would need
to consider the behavior of other chemical elements with higher and lower
boiling and freezing point. Alternatively, we could work with the expansion
of columns of mercury or other substances.

Similar problems arise with the construction of utility functions based
on a best and worst outcome. Really horrible outcomes or really wonderful
outcomes may be so far from ordinary experience that one is a poor judge
of comparing lotteries between such extremes. Perhaps the most dramatic
comparison of this type is the so-called “Pascal’s wager” with which religious
priesthoods attempt to gain power over ordinary people. “He who believes
what I say and does what I say will enjoy unimaginable bliss for all eternity.
He who does not will experience an infinity of torture.” Let there be a utility
cost C of following the priest’s instructions. Suppose you think that the
chance that the priest is telling the truth is p. Then your expected utility
if you believe the priest and do what he says is p ×∞ + (1 − p)(X − C) =
∞. If on the other hand you choose not to do what the priest says, is
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p× (−∞) + (1− p)X = −∞. If p > 0, then no matter how small it is, you
will prefer to believe the priest and follow his instructions. 3

Other ordinal measures of temperature are possible. For example, we
could measure the temperature of everything that is warmer than freezing
water by the square of its Celsius temperature and everything colder than
freezing water by minus the square of its Celsius temperature. This measure
would always assign higher numbers to warmer things. You could still use
this scale with a mercury thermometer. (Of course the temperature numbers
painted on the side of your thermometer would not be equally spaced.) But
this measure would be inconvenient if you wanted to calculate the tempera-
ture of mixtures.

Exercise: (Mainly for entertainment...not to be handed in.)
A.) According to Wikipedia “A now somewhat obsolete scale ... was

created by R A F de Réaumur (1683-1757) a French scientist. He used
the freezing point of water as his zero mark, and put the boiling point at 80
degrees. This scale was widely used in the 18th and 19th centuries, especially
in France, in scientific communities.” How is the temperature in the Réaumur
scale related to the temperature in degrees Fahrenheit?

B) Scientists have determined that the coldest possible temperature is -
273.15 degrees Celsius. Temperature in degrees Kelvin assigns a temperature
of 0 to this coldest temperature and assigns a difference of 100 degrees be-
tween the freezing point of water and the boiling point of water (at sea level).
How is temperature in degrees Kelvin converted to degrees Fahrenheit?

C) Another temperature scale, named after the Scottish engineer W.J.M. Rank-
ine, is the Rankine scale. It assigns a number of zero to the coldest possible
temperature, but a Rankine degree is equal to one degree Fahrenheit. What
are the temperatures of the freezing point and boiling point of water in the
Rankine scale?

D) Suppose that you measured temperatures between the freezing point
and the boiling point of water by the formula

S(x) =
1

100
C(x)2

where C(x) is the temperature in degrees Celsius. If pot of water x is the
same temperature as a mixture with proportions p(x) of water that is boiling

3This argument was proposed by philosopher and mathematician, Blaise Pascal, em
Pensees, 1670
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and (1−p(x)) of water that is just about to freeze? How would you calculate
the temperature of this mixture?

3 Risk Aversion and Preferences over Money

Gambles

We could conduct this discussion by assuming that there is only one com-
modity. But we can do better, and to do so is instructive.

If there is more than one commodity, the natural way to handle prefer-
ences over money gambles is to employ the notion of indirect utility. Suppose
that there are n ordinary commodities and that a von Neumann-Morgenstern
utility function is defined over lotteries in which the prizes are n-commodity
bundles. Let us consider a consumer with von Neumann-Morgenstern utility
function u(x). Let us consider lotteries in which the consumer’s income is
randomly determined, but the price vector p is the same for all outcomes of
the lottery. Let

v(p, y) = max{u(x)|px ≤ y}

be this consumer’s indirect utility function. Since u is determined up to an
affine transformation, so is v. (You should be able to show this.)

If a consumer plans to maximize her utility subject to whatever her budget
turns out to be, then her preferences over money lotteries will be represented
by expected indirect utility. Not only does this setup allow us to analyze
preferences over gambles with random income where prices are held constant,
but it also enables us to describe preferences over gambles in which prices as
well as incomes are random.

Example 1: There are two commodities, 1 and 2, and the von Neumann-
Morgenstern utility function is

u(x1, x2) =
(
x1 + 2x

1/2
2

)1/2
.

Suppose that p = (p1, p2) = (1, p2). To find indirect von Neumann-Morgenstern
utility, v(p, y), we find the Marshallian demand function for someone with
income y and prices (1, p2). Setting marginal rate of substitution equal to
the price ratio, we find that

x2(1, p2, y) = p−22 .

11



At an interior solution, it must be that

x1(1, p2, y) = y − p2x2(1, p2, y) = y − 1

p2
.

Thus there is an interior solution if and only if y > 1
p2
. If y ≤ 1

p2
, then

x1(1, p2, y) = 0 and x2(1, p2, y) = y
p2

. Then for y > 1
p2
, we have

v(1, p2, y) = y − 1

p2
+ 2

1

p2
= y +

1

p2
.

Then indirect von Neumann-Morgenstern utility is

v(1, p2, y)1/2 =

(
y +

1

p2

)1/2

.

Example 2: There are n commodities and the von Neumann-Morgenstern
utility function is homogeneous of degree k. Then x(p, y) = yx(p, 1) and so

v(p, y) = u(yx(p, 1)) = u(x(p, 1))yk.

Thus when p is held constant, v(p, y) is just a constant times yk.

Example 3: A special case of Example 2.

u(x1, x2) = (xa1 + xa2)
b .

The indirect utility function for a CES utility function with parameters a
and b is

v(p1, p2, y) = (pr1 + pr2)
−b/r yab

where r = a/(a− 1). See Jehle and Reny Example 1.2, pp 31-32 for the case
where b = 1/a.

A consumer is said to be risk averse with respect to a money gamble if
she prefers to receive the expected value of the gamble with certainty rather
than to have the gamble. If she prefers the gamble, she is said to be risk
loving. A consumer who is risk averse with respect to all money gambles is
said to be (just plain) risk averse.

If the expected utility function v(p, y) is concave in y, then a consumer
is risk averse. If it is convex in y, she is risk loving. A consumer for whom
v(p, y) is neither concave nor convex will be risk averse for some gambles and
risk loving for other gambles. Draw some pictures to illustrate this.
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3.1 Measures of Risk Aversion

Degree of absolute risk aversion (at y) is defined to be

Ra(y) =
−u′′(y)

u′(y)

Things to Notice:
1) This measure does not change with affine transformations of u.
2) Suppose that absolute risk aversion is a constant, a > 0, then it must

be that we can write the von Neumann Morgenstern utility function as

u(y) = 1− e−ay.

This function is called the CARA function.
Proof of this claim: To find the utility function, we need to solve the

differential equation
−u′′(y)

u′(y)
= a.

This is equivalent to the equation

d lnu′(y)

dy
= −a

which implies that
ln (u′(y)) = −ay + b

for some b. Exponentiating both sides gives us

u′(y) = ebe−ay.

Integrating both sides of this equation, we have

u(y) = c− 1

a
ebe−ay

for some constants b and c. Since von Neumann Morgenstern utility func-
tions are unique up to increasing affine transformations, we could choose the
constant c to be any constant and b to be any positive constant. Economists
have found it convenient to choose c = 1 and eb/a = 1. With these choices,
we can write the utility as 1− e−ay.

3) Risk aversion is positive for risk averters, negative for risk lovers.
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4) If v(y) = h(u(y)) where h is increasing and concave, then v represents
more risk averse preferences than u.

Proof: v′(y) = h′(u(y))u′(y) > 0 and v′′(y) = h′′(u(y))u′(y)2+h′(u(y))u′′(y).
So

v′′(y)

v′(y)
=
h′′(y)

h′(y)
u′(y) +

u′′(y)

u′(y)
<
u′′(y)

u′(y)
.

Conversely, if v is more risk averse than u, then v(y) = h(u(y)) where h
is a concave function.

5) We say there is decreasing absolute risk aversion DARA if for all y,
the degree of absolute risk aversion is a decreasing function of y.

6) A consumer with decreasing absolute risk aversion who is faced with a
choice of portfolios containing one risky asset and one safe asset, will choose
to purchase a greater amount of the risky asset as he gets wealthier. (In
other words, the risky asset is a “normal good” for a consumer with DARA.)
See proof in Jehle and Reny.

Risky asset gives payoff 1 + ri in event i per dollar invested in it. Initial
wealth is w units of safe asset. If he spends β dollars on the risky asset, his
wealth in event i will be w − β + β(1 + ri) = w + βri. His expected utility
will be

∑
i(u(w + βri)). At an optimum, it must be that

d

dβ

∑
i

(u(w + βri)) =
∑
i

u′i(w + βri)ri = 0.

How does wealth affect optimal β? Differentiate both sides with respect to
w. We have ∑

i

u′′i (w + βri)ri +
∑
i

u′′i (w + βri)r
2
i

dβ

dw
= 0.

Rearrange terms to find

dβ

dw
= −

∑
i u
′′
i (w + βri)ri∑

i u
′′
i (w + βri)r2i

.

The denominator of this expression must be negative. If there is DARA,
the numerator is also negative. See Jehle and Reny for the details.

3.1.1 Relative risk aversion

Degree of relative risk aversion at y is defined as

Rr(y) =
−yu′′(y)

u′(y)
.
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Things to Notice:
1) If there is constant relative risk aversion, then there must be decreasing

absolute risk aversion. Rr(y) = yRa(y) so Ra(y) = Rr(y)/y. If Rr(y) > 0 is
constant, then Ra(y) is clearly decreasing in y.

2) There is constant relative risk aversion CRRA if and only if u(y) is
an affine transformation of u(y) = 1

a
ya for some constant a 6= 0 or an affine

u(y) = ln y.
3) Suppose that preferences over lotteries are homothetic and repre-

sentable by an expected utility function over income. Then by Bergson’s
theorem, they belong to the constant relative risk aversion family.

4) If there are two assets, one risky, one safe, then if there is DRRA, the
wealthier you get, the larger fraction of your wealth you will keep in the risky
asset. If there is CRRA, that fraction will be constant.

3.1.2 Certainty equivalent utility function

Another way to represent preferences on money lotteries is by their “certainty
equivalents”. How much money would I need to have with certainty to be
exactly as well off as if I had this lottery.

The risk premium for a gamble is defined as the difference between the
expected return of the gamble and the certainty equivalent of the gamble.

Draw a graph with two possible events, contingent commodities. Points
in the graph are indifferent to some sure thing found on the 45 degree line.
Certainty equivalent is the projection of this line onto either axis.

For example, suppose that u(y) = ln(y) for all y > 0. What is the
certainty equivalent of a gamble in which the toss of a fair coin determines
whether you will have y = y0 or y = W > y0? To answer this question, solve
the equation u(C) = 1/2u(y0) + 1/2u(W ), which is equivalent to

lnC = 1/2 ln y0 + 1/2 lnW

which is equivalent to
C =

√
W
√
y0.

The risk premium of this gamble is then

P = W/2 + y0/2−
√
W
√
y0.

For example if W = 100 and y0 = 1, the risk premium is 55.5− 10 = 45.5
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Suppose that like Bernoulli’s poor fellow, you found a lottery ticket that
would pay either 0 or W with probability 1/2 for each outcome and that
your initial wealth was y0, so that the gamble you face is that your wealth
will be y0 with probability 1/2 and y0 + W with probability 1/2. What is
the certainty equivalent of your position? Solve

lnC = 1/2 ln y0 + 1/2 ln (W + y0).

Then
C =

√
y0
√
W + y0.

The risk premium is

P = W/2−√y0
√
W + y0.

Another example: Suppose that u(y) =
√
y. What is the certainty equiv-

alent of a gamble in which the toss of a fair coin determines whether you will
y = 0 or y = W? Solve the equation

√
C = 1/2

√
0 + 1/2

√
W which gives

you C = W/4. The risk premium of this gamble is

P = W/2−W/4 = W/2.

Example: Suppose that u(y) =
√
y. What is the certainty equivalent of

a gamble in which a fair coin is tossed repeatedly until tails appear. If heads
show up the first t times it is tossed and then comes up tails, your wealth
will be 2t.

Solve the equation:

√
CE =

∞∑
t=1

1

2t
2

t
2 =

∞∑
t=1

(
2−

1
2

)t
.

Recall that if −1 < a < 1, the sum of a geometric series
∑∞
t=1 a

t is a
1−a . The

above series is a geometric series in which a = 1√
2
. Therefore our equation

becomes
√
CE =

2−1/2

1− 2−1/2
=

1√
2− 1

Squaring both sides, we find CE = 1
(
√
2−1)2 ∼ 5.83.
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4 Subjective Probability

So far we have treated probabilities as if they are objectively known. But
in many economic applications, there is not a clear “objective” probability
that would be recognized and agreed to by all reasonable observers. Instead,
individuals have their own, “subjective” notions of the likelihood of events.
We can, however, construct a coherent theory of “subjective probability”
that seems to correspond to the way that a systematic rational decision-
maker would organize his thoughts about uncertain events.

One theory of subjective probabilities works as follows. Suppose that an
individual is an expected utility maximizer over events with known probabil-
ity p. Consider two outcomes g and b, such that having g for sure is preferred
to having b for sure. Now consider an event E and define a lottery L(E) that
gives you prize g if E occurs and prize b if E does not occur. Let us define the
decision-maker’s subjective probability of the event E to be the probability p
such that the decision-maker is indifferent between the lottery L(E) and a
lottery in which he gets prize g with probability p and prize b with proba-
bility 1 − b.4 This procedure works well, in cases where the decision-maker
does not care about the “events” themselves, but only with the “prizes” as-
sociated with the events. This seems appropriate for evaluating outcomes
of the spin of a roulette wheel, but without some careful interpretation is
not appropriate if the events themselves affect preferences. This is known as
state dependent utility. Examples of events that may directly affect prefer-
ences are: “It will rain today” or “I will have a serious illness today” or more
drastically, “I will be eaten by a bear or run over by an SUV. ”

An example illustrates what can go wrong with the previous method of
finding subjective probability when utility is state dependent. Suppose that
you are interested in the probability that it will rain on the day of an outdoor
sporting event which you are interested in attending. A ticket to this event
costs $36. Bundle g = (1, 64) consists of 1 ticket to the game and $64 in
spending money. Bundle b = (0, 100) has no ticket to the game and $100 in
spending money. If it rains on the day of the game, you will throw away the
ticket and not go to the game. Although you realize that there is a chance
that you may have to throw away the ticket because of rain, you still prefer
bundle g to bundle b.

Lets try to apply the method previously discussed to determine your

4If the decision-maker has continuous preferences, there will be exactly one p.
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subjective probability p(E) of the event E that it will rain on the day of the
game. Construct the lottery L(E) that gives you the bundle g if it rains on
the day of the game and b if it does not rain on the game. You like bundle g
better than bundle b. Now ask “For what value of p am I indifferent between
the lottery L(E) and a simple lottery in which I get bundle g with probability
p and b with probability (1− p). ” Why is this not a reasonable way to find
out how likely you think it is to rain? What do we mean by how likely you
think it is to rain?

The lottery L(E) is one in which if it rains, you will pay $36 and get a
(useless) ticket to the game and if it does not rain you will have $100 and no
ticket to the game. If you believed that the probability of rain is p > 0, you
would always prefer any simple lottery between g and b to the lottery L(E).

A more satisfactory way to deal with subjective probability for state de-
pendent events, is to make sure that the description of the “prizes” over which
you have preferences includes a full description of the preference-relevant part
of the state. So for example, suppose we describe the prize not only by how
many tickets and how much money you have, but also by whether it is rain-
ing or not. We would now describe the prize by the three variables (R, T,X)
where R is 1 or 0 depending on whether it rains on the day of the game, T
is 0 or 1 depending on whether you have a ticket, and X is money available
for other stuff. Now take two fully specified outcomes G and B such that G
is preferred to B. For example, let G = (1, 0, 100) and B = (0, 0, 90). We
know that you prefer G to B. Let L(E) be the lottery that gives you prize
G if it rains and prize B if it does not rain. We then look for the probability
p and construct the simple lottery that gives you prize G with probability p
and prize B if it does not rain. Let us find the probability p such that you
find that this simple lottery is indifferent to L(E) and define this p to be
your subjective of p. Now, unlike the earlier example, we see that the lottery
L(E) and the simple lottery lead to the same two outcomes. Either it rains
and you stay home and have $100 or it does not rain and you stay home and
have $90.

4.1 Proper scoring rules

A mechanism that gives agents an incentive to truthfully report their sub-
jective probability of an event is known as a proper scoring rule. How do you
get the weatherman to truthfully report his subjective probability that it
will rain tomorrow? There are many possible payoff functions that will give
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a risk-neutral weatherman an incentive to report these probabiliies truthfully.
Two commonly discussed examples are the Brier Score and the logarithmic
score.

The Brier score works as follows. Suppose that the weatherman has
subjective probabiltiy π that it will rain tomorrow. If he announces that
his forecasted probability of rain is f , then if it rains, his Brier score will be
1−(1−f)2. If it doesn’t rain, his Brier score will be 1−f 2. The weatherman’s
expected payoff if he announces probability f is then

1−
(
π((1− f)2 + (1− π)f 2

)
.

The logarithmic scoring rule will pay the weatherman C − ln f if it rains
and C − ln(1− f) if it doesn’t rain. In this case, the weatherman’s expected
payoff is

C − (π ln f + (1− π) ln(1− f)) .

In either case, the weatherman chooses f to maximize his payoff. Simple
calculus shows that in both cases he maximizes his payoff by selecting f = π.

5 Value of Life

How much would I have to pay you to play a game of Russian roulette?
If your answer is “No amount of money would make me do that”, must I
assume that you have “infinite disutility” for dying?

Do you ever cross busy streets or drive a compact car in fast freeway traf-
fic? If you do so, you are taking an avoidable risk of being killed. How can a
willingness to take small risks for small gains be consistent with unwillingness
to play Russian roulette for any price?

There is a simple, and I believe fairly satisfactory answer within the
standard expected utility model. Let us start with a single period version.
Suppose that there is just one consumption good and your preferences can
be represented by a utility function U(π, c) where c is your consumption
contingent on survival and with probability 1−π you will die at the beginning
of the period and with probability π you will survive. Suppose that the
function u(·) is continuously differentiable and strictly increasing, but that
there is a bound b such that u(c) ≤ b for all c.

Suppose that in the initial situation you have survival probability π̄ and
consumption c̄. In order to study tradeoffs that you would be willing to take,
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we would like to consider the indifference curve specified by {(π, c)|πu(c) =
π̄u(c̄). Since u(c) ≤ b for all c, it must be that along this indifference curve,

π ≥ π̄u(c̄)

b
.

So, for example if
π̄u(c̄)

b
> 5/6,

you would never voluntarily play Russian roulette. (Draw a picture of the
indifference curve.)

On the other hand, since u is differentiable, there is a well-defined and
finite marginal rate of substitution between survival probability and wealth.
Someone with this type of utility function is willing to undertake small risks
for a finite price.

This is the foundation of the “Value of expected lives” method in benefit
cost analysis. Many public safety projects, like road improvements, are likely
to save lives, but at an economic cost. Public authorities must decide whether
they are “worth it.” How can we avoid falling into the trap that “Since
human lives are priceless, every such project is worthwhile.” Most such
projects result in a tiny improvement in survival probability for each of a
large number of people. Each of the people who is made a little safer has some
finite willingness to pay for this additional safety. Let Vi be the marginal rate
of substitution of person i between survival probability and money. Let ∆πi
be the gain in i’s survival probability from the project. Then i’s willingness
to pay for the increased survival project resulting from the project is Vi∆πi.
Suppose for example that Vi is the same for all i. Then total willingness to
pay for the project is V

∑
i ∆πi, which is V times the expected number of

lives saved.

6 Applications to Insurance

6.1 Insurance against financial loss

Suppose that a consumer is a risk averse expected utility maximizer with
von Neumann-Morgenstern utility function πiu(xi) where xi is the number
of dollars he has to spend in event i. If he does not buy insurance, his income
will be yi in event i, where yi may vary from one event to another. Suppose
that he is able to buy actuarially fair insurance. What does he do?
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Actuarially fair means that the cost of $1 contingent on event i is πi. So
he seeks to maximize

πiu(xi)

subject to
n∑
i=1

πi(xi − yi) = 0.

Writing the Lagrangean for this problem and taking derivatives, we see
that at a constrained maximum it must be that for some λ, u′(xi) = λ for all
i. Since the consumer is assumed to be risk averse, we know that u′′(x) < 0
for all x, so the only solution must be one in which consumption is the same
amount, x̄ in every event. The budget constraint tells us that

n∑
i=1

x̄ = x̄ =
n∑
i=1

πiyi.

His insurance policy is one in which he receives x̄ − yi when yi < x̄ and he
pays yi − x̄ when yi > x̄.

Exercise: Work out the special case when yi takes on only two values
ȳ and ȳ − L.

6.2 Medical Insurance

6.2.1 Example 1

Let us assume that the probabilities of getting various diseases are known to
everyone from medical experience and that everyone concerned agrees about
these probabilities.

Suppose that someone is sure to get exactly one of n different diseases.
His attitude toward risks, conditional on being healthy is described by a
strictly concave von Neumann-Morgenstern utility function u(x). He will get
disease i with proabiltiy πi. If he gets disease i, he can go to the hospital
for repairs. The hospital will fix him up as good as new at a cost of ci for
disease i.

Suppose that he has fixed wealth, W >
∑
piici and that he can buy any

amount of insurance at actuarially prices, for each of the various diseases.
What will he buy?

Suppose that some diseases are so expensive, that he can not afford to
buy insurance that will pay for curing them. How do we handle that?
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6.2.2 Example 2

Consider someone whose income is independent of his health. Suppose that
he is faced with the possibility of several illnesses, none of which is curable.
His expected utility function is πiui(xi) where πi is the probability that he
gets disease i and xi is the amount of money available to him contingent on
his getting disease i where

ui(xi) = u(xi)− ai.

Show that this person will buy no health insurance.

6.2.3 Example 3

Consider the same situation, but this time suppose that his expected utility
function is πiui(xi) where

ui(xi) =
1

α
(kixi)

α

where α < 1. In this case, we say that a disease is more severe, the lower
is ki. When will this person buy insurance that pays him if he has severe
illness and where he pays the insurance company if he is well? When will he
buy insurance such that the insurance pays him if he is well and he pays the
insurance company if he has severe illness.
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