Name

Midterm Examination: Economics 210A

 October 16, 2015Question 1.) In their 1972 book, Economic Theory of Teams, Jacob Marschak and Roy Radner describe a team theory problem as one in which n players all want to maximize the same objective function. Each player chooses an action x_{i} from a set X_{i} and each player gets a payoff equal to $F\left(x_{1}, \ldots, x_{n}\right)$. There is no "boss" to coordinate their activities. Marschak and Radner define an outcome $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ to be Person-by-person satisfactory if each person is taking the action that maximizes F, given what the other players are doing. This means that for all players i :

$$
F\left(\bar{x}_{1}, \ldots, \bar{x}_{i} \ldots, \bar{x}_{n}\right) \geq F\left(\bar{x}_{1}, \ldots, x_{i}, \ldots, \bar{x}_{n}\right)
$$

for all $x_{i} \in X$.
If \bar{x}_{i} is in the interior of X_{i} for all i and if \bar{x} is person-by-person satisfactory, what must be true of the first and second order partial derivatives of F ?

For now let us consider two-person teams. Assuming that F is twice continuously differentiable, determine whether each of the following three statements is true or false. If it is true, sketch a proof. If it is false, provide a counterexample.

Claim 1) If (\bar{x}_{1}, \bar{x}_{2}) maximizes $F\left(x_{1}, x_{2}\right)$ on the set on (X_{1}, X_{2}), then outcome (\bar{x}_{1}, \bar{x}_{2}) must be person-by-person satisfactory.

Claim 2) If outcome $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ is person-by-person satisfactory, it must be that $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ maximizes $F\left(x_{1}, x_{2}\right)$ on $\left(X_{1}, X_{2}\right)$.

Claim 3) If F is a concave function, then if an outcome is person-by-person satisfactory and x_{i} is in the interior of X_{i} for $i=1,2$, it must be that $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ maximizes $F\left(x_{1}, x_{2}\right)$ on $\left(X_{1}, X_{2}\right)$.

Question 2.) A consumer has preferences on $X \subset \Re_{+}^{2}$ which are defined in the following way. There is a real-valued continuous function u with domain X such that for all x and y in $X, x \succeq y$ if and only if $u(y)-u(x) \leq 1$.
A) Where the relations \succ and \sim are defined from \succeq in the usual ways, describe the relations $x \succ y$ and $x \sim y$ in terms of inequalities involving $u(x)$ and $u(y)$.
B) Determine whether each of the following three statements is true or false. If it is false show a counterexample. If it is true, prove it.

Claim 1) The relation \succeq is transitive.

Claim 2) The relation \succ is transitive.

Claim 3) The relation \succeq is continous.
C) Suppose that \succeq is described as above, where $u\left(x_{1}, x_{2}\right)=x_{1} x_{2}$. Let B be the set of things the consumer can afford with income 10 and where the price of good 1 is 1 and the price of good 2 is 2 . Is $c(B)$ non-empty? Sketch the set $c(B)$. Describe this set, using two inequalities.

