Name \qquad

Midterm Examination: Economics 210A

November 6, 2013
Answer Question 1 and any 3 of the remaining 4 questions. Good luck.
1) A consumer has utility function

$$
u\left(x_{1}, x_{2}\right)=\frac{1}{\frac{1}{x_{1}}+\frac{4}{x_{2}}}
$$

A) Find this consumer's Marshallian demand function for each good.

Answer:

$$
\begin{aligned}
x_{1}\left(p_{1}, p_{2}, m\right) & =\frac{m}{p_{1}+2 p_{1}^{1 / 2} p_{2}^{1 / 2}} \\
x_{2}\left(p_{1}, p_{2}, m\right) & =\frac{2 m}{2 p_{2}+p_{1}^{1 / 2} p_{2}^{1 / 2}}
\end{aligned}
$$

B) Find this consumer's indirect utility function.

Answer: You can get your answer by substituting the Marshallian demands that you found into the definition of indirect utility which is

$$
\begin{gathered}
v(p, m)=u\left(x_{1}(p, m), x_{2}(p, m)\right) . \\
v\left(p_{1}, p_{2}, m\right)=\frac{m}{p_{1}+4 p_{1}^{1 / 2} p_{2}^{1 / 2}+4 p_{2}}
\end{gathered}
$$

Another way of writing the same answer is

$$
v\left(p_{1}, p_{2}, m\right)=\frac{m}{\left(p_{1}^{1 / 2}+2 p_{2}^{1 / 2}\right)^{2}}
$$

C) Find this consumer's expenditure function.

Since $v(p, e(p, u))=u$, it follows that

$$
\frac{e\left(p_{1}, p_{2}, u\right)}{p_{1}+4 p_{1}^{1 / 2} p_{2}^{1 / 2}+4 p_{2}}=u
$$

and therefore

$$
e\left(p_{1}, p_{2}, u\right)=u\left(p_{1}+4 p_{1}^{1 / 2} p_{2}^{1 / 2}+4 p_{2}\right)
$$

A side remark: To check your answer (and see how these structures are related), you could notice that the denominator of the indirect utility function is
a CES function of the p 's. You might recall from our classroom discussion that if a utility function is of the form

$$
\left(c_{1} x_{1}^{a}+c_{2} x_{2}^{a}\right)^{1 / a}
$$

then the corresponding expenditure function is of the form

$$
\left(c_{1}^{\prime} p_{1}^{b}+c_{2}^{\prime} p_{2}^{b}\right)^{1 / b} u
$$

When this is the case, the elasticity of substitution of the direct utility function is $1 /(1-a)$ and the elasticity of substitution of the indirect utility function, which is $1 /(1-b)$ must be inverses of each other. That is, $1 /(1-b)=1-a$. Solving this equation for b, we have $b=-a /(1-a)$. In our example, $a=-1$, so $b=1 / 2$. Thus the expenditure function is of the form

$$
e\left(p_{1}, p_{2}, u\right)=u\left(c_{1}^{\prime} p_{1}^{1 / 2}+c_{2}^{\prime} p_{2}^{1 / 2}\right)^{2} u
$$

We also showed that $c_{i}^{\prime}=c_{i}^{\sigma}=c_{i}^{1 / 2}$, So we would have

$$
e\left(p_{1}, p_{2}, u\right)=\left(p_{1}^{1 / 2}+2 p_{2}^{1 / 2}\right)^{2} u=\left(p_{1}+4 p_{1}^{1 / 2} p_{2}^{1 / 2}+4 p_{2}\right) u
$$

D) Find this consumer's Hicksian demand function for each good.

The Hicksian demands are equal to the corresponding partial derivatives of the expenditure function.

We find

$$
h_{1}\left(p_{1}, p_{2}, u\right)=u\left(1+2 p_{1}^{-1 / 2} p_{2}^{1 / 2}\right)
$$

and

$$
h_{2}\left(p_{1}, p_{2}, u\right)=u\left(4+2 p_{1}^{1 / 2} p_{2}^{-1 / 2}\right)
$$

E) Find the income and substitution effects of a change in the price of good 1 on the demand for good 1.

The substitution effect is the partial derivative of $h_{1}\left(p_{1}, p_{2}, m\right)$ with respect to p_{1}. That is

$$
-u p_{2}^{1 / 2} p_{1}^{-3 / 2}
$$

We may want to express this substitution effect entirely as a function of prices and income. Thus we would make use of the fact that $u=v\left(p_{1}, p_{2}, m\right)$. Then we have the substitution effect is

$$
\frac{-m p_{2}^{1 / 2} p_{1}^{-3 / 2}}{p_{1}+4 p_{1}^{1 / 2} p_{2}^{1 / 2}+4 p_{2}}
$$

The income effect is

$$
-x_{1}\left(p_{1}, p_{2}\right) \frac{\partial x\left(p_{1}, p_{2}, m\right)}{\partial m}=-\frac{m}{\left(p_{1}+2 p_{1}^{1 / 2} p_{2}^{1 / 2}\right)^{2}}
$$

2) A consumer has utility function

$$
u\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{\frac{1}{x_{1}}+\frac{4}{x_{2}}}+2 \sqrt{x_{3}}
$$

A) If this consumer has income m and the prices of the three goods are p_{1}, p_{2}, and p_{3}, how much of her income will she spend on good 1. (Hint: make use of part B of your answer to the previous question.)
Answer: If the consumer spends a total of s on goods 3 then she will get s / p_{3} units of good 3 and will have $m-s$ left to spend on goods 1 and 2. Her utility will then be

$$
2 \sqrt{s / p_{3}}+v\left(p_{1}, p_{2}, m-s\right)=2 \sqrt{s / p_{3}}+\frac{m-s}{\left(p_{1}^{1 / 2}+2 p_{2}^{1 / 2}\right)^{2}}
$$

She will choose s to maximize this. At an interior maximum, the derivative of this expression with respect to s must be zero. Then

$$
\left(s p_{3}\right)^{1 / 2}-\left(p_{1}^{1 / 2}+2 p_{2}^{1 / 2}\right)^{2}=0
$$

and so

$$
\begin{equation*}
s=\frac{\left(p_{1}^{1 / 2}+2 p_{2}^{1 / 2}\right)^{4}}{p_{3}} \tag{1}
\end{equation*}
$$

and total expenditure on goods 1 and 2 is

$$
\begin{equation*}
m-s=m-\frac{\left(p_{1}^{1 / 2}+2 p_{2}^{1 / 2}\right)^{4}}{p_{3}} \tag{2}
\end{equation*}
$$

B) Write down the consumer's Marshallian demand function for each good. (Hint: make use of your answer to parts A of this question and the previous question.)

Answer: The consumer will choose to allocate the expenditure $m-s$ between goods 1 and 2 in such a way as to maximize utility subject to $p_{1} x_{2}+p_{2} x_{2}=m-s$. So we can just apply the Marshallian demand functions from Problem 1 with income $m-s$ These are:

$$
\begin{aligned}
& x_{1}\left(p_{1}, p_{2}, m\right)=\frac{m-s}{p_{1}+2 p_{1}^{1 / 2} p_{2}^{1 / 2}}=\left(m-\frac{\left(p_{1}^{1 / 2}+2 p_{2}^{1 / 2}\right)^{4}}{p_{3}}\right)\left(\frac{1}{p_{1}+2 p_{1}^{1 / 2} p_{2}^{1 / 2}}\right) \\
& x_{2}\left(p_{1}, p_{2}, m\right)=\frac{2(m-s)}{2 p_{2}+p_{1}^{1 / 2} p_{2}^{1 / 2}}=\left(m-\frac{\left(p_{1}^{1 / 2}+2 p_{2}^{1 / 2}\right)^{4}}{p_{3}}\right)\left(\frac{2}{2 p_{2}+p_{1}^{1 / 2} p_{2}^{1 / 2}}\right)
\end{aligned}
$$

An excellent answer would also note that there will be an interior solution if and only if

$$
\left(m-\frac{\left(p_{1}^{1 / 2}+2 p_{2}^{1 / 2}\right)^{4}}{p_{3}}\right)>0
$$

If this inequality is reversed, there will be a corner solution in which the consumer consumes only good 3.

3) Consider the function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\ln \left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)
$$

Explain your answers do each of the following questions:
A) Is the function f homogeneous? If so, of what degree?

Answer: No. $f(t x)=\ln t^{2} f(x)=2 \ln t+f(x)$. A function is homogeneous if and only if $f(t x)=t^{k} f(x)$ for all t and some k. There is no value of k such that $2 \ln t+f(x)=t^{k} f(x)$.
B) Is the function f homothetic?

Answer: Yes. $f(x)$ is a strictly increasing function of the homogeneous function $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.
C) Find the gradient vector of f at the point $\left(x_{1}, x_{2}, x_{3}\right)=(1,3,5)$.

The gradient is $(2 / 35,6 / 35,10 / 35)$.
D) At the point $(1,3,5)$, find the directional derivative of f in the direction ($2 / 9,-2 / 9,1 / 9$).

Answer: For the directional derivative in the direction of a vector x, we need to take the inner product of the gradient with the normalized vector $x /|x|$ where $|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$. In our case, $x /|x|=(2 / 3,-2 / 3,1 / 3)$

The directional derivative is

$$
\frac{1}{3 \times 35}(2 \times 2-6 \times 2+10 \times 1)=\frac{2}{105} .
$$

2) Ada and Bo both have have convex preferences defined on a set X, but their preferences are not identical.
A) Let x be a commodity bundle in X. Let A be the set of bundles that both Ada and Bob like better than x. Is A necessarily a convex set? If so, prove it. If not, show a counterexample.

Answer: If Ada and Bob both have convex preferences, then the sets A and B are both context sets. The set of bundles that both like better than x is the set $A \cap B$. The intersection of two convex sets is a convex set. (A good answer would also prove this last claim.)
B) Let x be a commodity bundle in X. Let C be the set of bundles such that if $z \in C$, then $z=y_{A}+y_{B}$ for some $y_{A} \in X$ and $y_{B} \in X, z=y_{A}+y_{B}$ such that Ada prefers y_{A} to x and Bo prefers y_{B} to x. Is C necessarily a convex set. If so, prove it. If not, show a counterexample.

Answer: This is true. Let z and z^{\prime} be two points in C. Then $z=y_{A}+y_{B}$ for some $y_{A} \in A$ and some $y_{B} \in B$ and $z^{\prime}=y_{A}^{\prime}+y_{B}^{\prime}$ for some $y_{A}^{\prime} \in A$ and some $y_{B}^{\prime} \in B$. Now for any λ between 0 and 1, and any two points z and z^{\prime} in C, let $z(\lambda)=\lambda z+(1-\lambda) z^{\prime}$. Then

$$
z(\lambda)=\left(\lambda y_{A}+(1-\lambda) y_{A}^{\prime}\right)+\left(\lambda y_{B}+\left(1-\lambda y_{B}^{\prime}\right)\right)
$$

Since A and B are convex sets, it must be that $\lambda y_{A}+(1-\lambda) y_{A}^{\prime} \in A$ and $\lambda y_{B}+\left(1-\lambda y_{B}^{\prime}\right) \in B$. Since

$$
z(\lambda)=\left(\lambda y_{A}+(1-\lambda) y_{A}^{\prime}\right)+\left(\lambda y_{B}+\left(1-\lambda y_{B}^{\prime}\right)\right)
$$

it must be that $z(\lambda) \in C$ and hence C is a convex set.
5) Will's preferences are represented by the utility function

$$
u\left(x_{1}, x_{2}\right)=\min \left\{x_{1}^{1 / 2} x_{2}^{1 / 2}, x_{2}\right\}
$$

A) Draw a couple of indifference curves for Will.

Answer: Let good 1 be on the horizontal axis and good 2 on the vertical axis. To draw a typical indifference curve for Will, take a point (x, x) on the diagonal. The indifference curve through this point includes a straight horizontal line extending to the right of true point (x, x) and above and to the left of (x, x) is the locus of points $\left(x_{1}, x_{2}\right)$ satisfying the equation $x_{1} x_{2}=x$.
B) Find Will's Marshallian demand functions for goods 1 and 2.

Answer:
If $p_{1} \leq p_{2}, x_{1}\left(p_{1}, p_{2}\right)=x_{2}\left(p_{1}, p_{2}\right)=m /\left(p_{1}+p_{2}\right)$.
If $p_{1}>p_{2}$, then $x_{1}=m /\left(2 p_{1}\right)$ and $x_{2}=m /\left(2 p_{2}\right)$.

