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Midterm Examination: Economics 210A
November 7, 2012

Answer Question 1 and any 4 of the other 6 questions. Good luck.

1) Let f be a real-valued concave function whose domain is a convex subset of
<n. Let g be a function from the reals to the reals and define the composite
function h(x) = g (f(x)).

State whether each of the following claims about the function h is true or
false. If true, give a proof, justifying each claim made in your proof. If false,
give a counterexample and prove that your counterexample is a counterexample.

A) If g is a strictly increasing function, then h is a concave function.

False: Here is a counterexample. Let f be a function of a single variable,
f(x) = x. Then f is a concave function. Let g(y) = y3. Then y is an increasing
function. Then h(x) = x3. But h is not a concave function, as you can verify
by taking the second derivative of h.

B) If g is an increasing, concave function, then h is a concave function.

True: Take any x and y in the domain of f . Then since f is a concave
function, f(λx+ (1−λ)y) ≥ λf(x) + (1−λ)f(y). Since g is a strictly increasing
function, it must then be that

g (f(λx+ (1− λ)y)) ≥ g (λf(x) + (1− λ)f(y)) .

Since g is a concave function, it must be that

g (λf(x) + (1− λ)f(y)) ≥ λg(f(x)) + (1− λ)g (f(y)) .

The previous two inequalities imply that

g (f(λx+ (1− λ)y)) ≥ λg(f(x)) + (1− λ)g (f(y)) .

Therefore since g (f(λx+ (1− λ)y)) = h(λx+ (1− λ)y and h(x) = g(f(x)) and
h(y) = g (f(y)), it follows from the previous inequality that h(λx+ (1− λ)y ≥
λh(x) + (1− λ)h(y), which means that h is a concave function.

C) If g is a concave function, then h is a concave function.

False: Here is a counterexample. Let f be a function with domain the non-
negative real numbers and let f(x) = x1/2. Let g(y) = −y. Then h(x) = −x1/2.
This is not a concave function, since its second derivative is positive.

2) Rocky consumes two goods. He prefers any bundle such that x1 > 0 and
x2 > 1 to any bundle for which these two inequalities are not satisfied. His
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preferences over bundles such that x1 > 0 and x2 > 1 can be represented by the
utility function

u(x1, x2) = ln (x1 + 1) + ln (x2 − 1)

for all (x1, x2) .

A) For what price-income combinations does Rocky choose positive amounts
of both goods?

B) Find Rocky’s Marshallian demand function.
C) Find Rocky’s indirect utility function.

If Rocky consumes positive amounts of both goods, it must be that his
marginal rate of substitution is equal to the price ratio of the two goods. This
implies that

p1
p2

=
x2 − 1

x1 + 1
,

which in turn implies that

p1x1 + p1 = p2x2 − p2.

From the budget equation we have p1x1+p2x2 = m. Solving these two equations
in two unknowns, we find

x1(p,m) =
m− p1 − p2

2p1

and

x2(p,m) =
m+ p1 + p2

2p2
.

From these equations, we see that he consumers positive amounts of both goods
if and only if m > p1 + p2 with p1 > 0 and p2 > 0.

When m > p1 + p2, the Marshallian demand function is given by the two
equations above. If p1 + p2 ≥ m ≥ p2, then x1(p,m) = 0 and x2(p,m) = m/p2.

Rocky’s indirect utility function is

v(p,m) = ln

(
m+ p1 − p2

2p1

)
+ ln

(
m+ p1 − p2

2p2

)
= 2 ln (m+ p1 − p2)− ln 2p1 − ln 2p2

= ln

(
m+ p1 − p2

4p1p2

)
(1)

if p1 + p2 < m.

v(p,m) = ln

(
m

p2
− 1

)
= ln (m− p2)− ln p2,

if p1 + p2 > m > p2.
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3) Rocky, from the previous problem, is one consumer in an economy in which
there are n people, i = 1, . . . n. Person i has a utility function of the form

ui(x1, x2) = Ai ln (x1 + bi) + ln (x2 − 1).

What restrictions, if any, do we need to put on the parameters Ai and bi so that
aggregate demands for goods 1 and 2 are determined by prices and the sum of
incomes and do not depend on the distribution of income? Relate your answer
to the Gorman polar form.

If Consumer i buys positive amounts of both goods, it must be that

Ai(x2i − 1)

x1i + bi
=
p1
p2

or equivalently,
p1x1i + p1bi = Aip2x2i −Aip2.

We also have the budget equation

p1x1i + p2x2i = mi.

Solving these two linear equations, we find that if i consumes positive amounts
of both goods,

x1i(p,mi) =

(
Ai

Ai + 1

)(
mi − bip1 − p2

p1

)
=

(
Ai

Ai + 1

)
mi+

(
Ai

Ai + 1

)(
−bip1 − p2

p1

)
,

and

x2i(p,mi) =

(
1

Ai + 1

)(
mi + bip1 + p2

p2

)
) =

(
1

Ai + 1

)
mi+

(
1

Ai + 1

)(
bip1 + p2

p2

)
.

Now aggregate demand for good 1 is∑
i

x1i(p,mi) =
∑
i

(
Ai

Ai + 1

)
mi +

∑
i

(
Ai

Ai + 1

)(
−bip1 − p2

p1

)
,

If A1 = A2 = . . . = An = A, then aggregate demand for good 1 is

∑
i

x1i(p,mi) =

(
A

A+ 1

)∑
i

mi −
A

A+ 1

(∑
i

bi − n
p2
p1

)
.

In this case, aggregate demand for good 1 is determined by prices and ag-
gregate income and does not depend on income distribution. If any two Ai’s
are different, it is easy to verify that income redistribution form a person with
higher Ai to one with lower Ai would increase demand for good 1. A very
similar argument shows that the same is true for good 2.

So for prices and incomes such that all consumers buy positive amounts of
both goods, aggregate demand is determined by prices and aggregate income if
and only if the Ai’s are all the same. (The bi’s can be different.)
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How does this relate to the results about Gorman polar form? The theorem
is that aggregate demand depends on prices and aggregate income if and only
if indirect utilities can be represented in the form A(p)mi + Bi(p). Rocky and
his friends have utility functions that are monotonic transformations of utilities
of the Stone-Geary form. In particular, if you exponentiate their utility func-
tions and take them to the power 1/(1 + Ai), you see that they have the same
preferences as someone with utility function

(x1i + bi)
αi(x2 − 1)(1−αi)

where αi is between 0 and 1. Indirect utility for someone with this utility is

mi + p1bi − p2
p−αi
1 p−αi

2

=
1

p−αi
1 p−αi

2

mi +
p1bi − p2
p−αi
1 p−αi

2

.

If the Ai’s are all the same, then the α′is are all the same and we can write the
previous expression as

F (p)mi +Gi(p)

where

F (p) =
1

p−αi
1 p−αi

2

and

Gi(p) =
p1bi − p2
p−αi
1 p−αi

2

.

Note that when the Ai’s are all the same, F (p) is the same for all i, but when
the bi’s differ, the Gi’s differ, which is ok with the Gorman polar form.

4) A) What restrictions must α1, α2, and f(y) satisfy for the following to be a
legitimate indirect utility function? Explain.

v(p1, p2, y) = f(y)pα1
1 pα2

2

We know that a function v(p,m) is an indirect utility function for a contin-
uous utility function if and only if v is continuous, homogeneous of degree 0 in
(p,m), decreasing in each pi, increasing in m, and quasi-convex.

If the above function is decreasing in pi, it must be that αi < 0. If it is homo-
geneous of degree zero, it must be that f(ty)(tp1)α1(tp2)α2 = f(ty)tα1+α2pα1

1 pα2
2

is constant as t changes. This implies that f(t ∗ 1)tα1+α2 is a constant. This in
turn implies that f(y) = Ky−(α1+α2) for some positive constant K. Recalling
that αi’s are negative, we see that f(y) is increasing in y. It is not hard to show
that whenever α1 < 0 and α2 < 0, it must be that v(p,m) is quasi-convex. It
can also be shown that if v(p,m) is homogeneous off degree 0 and quasi-convex
in p then it is quasi-convex in (p,m).

B) What restrictions must the functions w(p1, p2) and z(p1, p2) satisfy for the
following to be a legitimate indirect utility function? Explain.

v(p1, p2, y) = w(p1, p2) + z(p1, p2)y
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The function z must be homogeneous of degree -1 in p1 and p2. The function
w(p1, p2) must be homogeneous of degree zero and non-increasing in both its
arguments. But the only way this can happen is if w(p1, p2) is a constant. So it
has to be that v(p1, p2, y) = k+ z(p1, p2)y where the function z is homogeneous
of degree -1.

5) A consumer has utility function

u(x1, x2) =
(
x
1/2
1 + 2x

1/2
2

)2
.

A) How is the ratio x1/x2 in which this consumer consumes the two goods
related to the ratio of the prices of goods 1 and 2? }

x1
x2

=
1

4

(
p2
p1

)2

B) What is the elasticity of substitution between the two goods?

σ = 2

C) Find the consumer’s Marshallian demands for goods 1 and 2.

x1 =
p2
p1

(
m

p2 + 4p1

)
x2 =

4p1
p2

(
m

p2 + 4p1

)
You can find this by brute force substitution, but it is a bit easier if you notice

that since the utility function is homothetic, the demands must be proportional
to income. From the answer to part A, it follows that

p1x1
p2x2

=
p2
4p1

From these two facts it follows that

p1x1
m

=
p2

p2 + 4p1

and
p2x2
m

=
4p1

p2 + 4p1

Multiply both sides of the first equation by m
p1

to find x1. Multiply both
sides of the second equation by m

p2
to find x2.

D) Find the consumer’s indirect utility function.
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v(p,m) =

((
p2
p1

)1/2

+ 2

(
p1
p2

)1/2
)2(

m

p2 + 4p1

)
6) Define the lexicographic preference ordering on <n. Which of the follow-
ing properties does the lexicographic ordering have? Completeness, transitivity,
strict monotonicity, strict convexity, continuity.

Let�L be the ordering defined as follows. For any two vectors x = x1, . . . , xn,
and x′ = x′1, . . . , x

′
n let k be the smallest index such that xk 6= x′k. Then x �L x′

if and only if xk > x′k.
This ordering is complete since if x 6= x′, then they must differ in at

least one coordinate and thus there will be a first coordinate k in which they
differ. Since the ordering of true real numbers is complete, either xk > x′k or
x′k > xk. Hence if x 6= x′, either x �L x′ or x′ �L x.

This ordering is transitive. If x �L y and y �L z, let k be the first
coordinate in which x and y differ and k′ be the first coordinate in which y and
z differ. Suppose that k < k′. Then zk = yk < xk and k is the first coordinate
on which x and z differ, so x � z. Suppose k′ < k. Then zk < yk = xk and so
x �L z. Finally if k′ = k, we have zk < yk < xk, so x �L z. Therefore it must
be that if x �L y and y �L z then x �L z.

This ordering is strictly monotonic. If x ≥ y then either x � y or
x = y. If x >> y, then x � y.

This ordering is strictly convex. If x � y, then xk > yk where k is the
first component in which they differ. Then k is the first component in which
λx+(1−λ)y differs. The kth component of λx+(1−λ)y is λkx+(1−λk)y > yk,
which implies that λx+ (1− λ)y �L y.

This ordering is not continuous if n ≥ 2. Let x � y, where x1 = y1
and x2 > y2. Then every open neighborhood of x contains a vector z such that
z1 < x1 = y1. For such a vector z, y � z. Therefore the set of points preferred
to y cannot be an open set. This means that � is not continuous.

7) A consumer buys two goods. The more of a good that the consumer buys the
higher the price per unit he must pay. (Resale of the good is impossible-think of
haircuts and other services–or airplane tickets that require you to show an id. )
The cost of buying x1 units of 1 is p1x

2
1 and the cost of buying x2 units of good 2

is p2x
2
2. The consumer’s income is m. Suppose this consumer’s utility function

is u(x1, x2) = xa1 + xa2. For what values of a does this consumer buy positive
amounts of both goods? (Hint: You may want to draw a diagram.) Find the
“demand functions” xi(p1, p2,m) showing quantities that he will buy given p1,
p2, and m and “indirect utility function” v(p1, p2,m) , showing his utility for
what he buys. Does Roy’s law still apply? Justify your answer.

The consumer’s budget equation is p1x
2
1+p2x

2
2 = m. Notice that the budget

set is bounded not buy a straight line, but by a curve that bulges out. Therefore
a point of tangency with an indifference curve may be a maximum even if the
utility function is not quasi-concave. All we need is that the utility function be
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“less convex than the budget equation”. For example, the thick curve in Figure
1 shows the boundary of the budget set for the case where p1 = p2 = 1/2. The
thin curves are indifference curves for someone with utility function u(x1, x2) =
x1.51 + x1.52 . There is a tangency at the point x1 = x2 = 1 (marked with a
dot) and as you can see from the diagram, this tangency is the best point the
consumer can afford.

ææ

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 1: Interior maximum, α = 1.5
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Figure 2: Corner maxima, α = 3

In Figure 2 we have α = 3 and the indifference curves bow even more sharply
than the budget line. Again the budget line is shown as the thick line and the
indifference curves as thin lines. There is at tangency at x1 = x2 = 1, but this
time, as we see from the picture, this point is the consumer’s worst, not his best
point on the boundary of the budget set. His best point on the budget is at
either of the extreme points where x1 = 0 or x2 = 0.
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The consumer’s best point will be interior if α < 2 and a boundary point
if α > 2. One way to see this is to make a change of variables. Let yi = x2i .
The consumer’s maximization problem can be written as Maximize u∗(y1, y2) =

y
α/2
1 + y

α/2
2 subject to p1y1 + p2y2. Now this is a standard consumer choice

problem with a linear budget. For this problem, if α/2 < 1, u∗ is quasi-concave
and the consumer will choose an interior point with y1 > 0 and y2 > 0. If
α/2 > 1, the consumer will always choose a corner solution. Both xi’s will
be positive if and only if both yi’s are positive. Therefore there will be an an
interior solution ifα ≤ 2 and a corner solution if α > 2. (What if α = 2?)

You could go ahead and solve for the Marshallian demands, using Lagrangians
and brute force. That is not too hard, but lets try to do it an easier way. Let’s
stick with our change of variables. We can solve for the y’s and then solve for
x’s from the y’s. Let β = α/2. We know that

y1
y2

=

(
p1
p2

)−σ
where σ = 1

1−β . Multiplying both sides of this expression by p1/p2, we have

p1y1
p2y2

=

(
p1
p2

)1−σ

.

We also have from the budget equation,

p1y1
m

+
p2y2
m

= 1

From the previous two equations, it follows that

p1y1
m

=
p1−σ1

p1−σ1 + p1−σ2

Therefore

y1(p,m) =
p−σ1

p1−σ1 + p1−σ2

m

and

y2(p,m) =
p−σ2

p1−σ1 + p1−σ2

m.

Now xi(p,m) =
√
yi(p,m), so we have

x1(p,m) =

√
p−σ1

p1−σ1 + p1−σ2

√
m

and

x2(p,m) =

√
p−σ2

p1−σ1 + p1−σ2

√
m.
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The only thing left to do to get the expression back in terms of our original
variables is to recall

σ =
1

1− β
=

1

1− α
2

=
2

2− α
.

We could substitute 2/(2−α) for σ in the above expressions and even get a bit of
simplification, but we note that it will still be true that the xi’s are proportional
to the square root of income.

Does Roy’s Law still apply? Before answering this, let’s work out the general
case found in the Extra Credit portion. I recommend taking a close look at this
solution, since it illustrates the workings of the “envelope principle” that finds
many uses in economics.

For Extra Credit: Suppose that there are n goods. A consumer has utility
function u(x) and a budget constraint of the form

∑
i pigi(xi) = m, where the

gi’s are all strictly increasing functions. Where x(p,m) is the bundle that solves
this constrained maximization problem with parameters p and m, let v(p,m) =
u(x(p,m)) be the corresponding “indirect utility function”. Show that you can
use a rule that is similar to Roy’s Law to recover the demand functions (over
the range of interior solutions) from the indirect utility function v.

The first order condition for an internal maximum is that

λpig
′
i(xi) =

∂u (x(p,m))

∂xi
(2)

for some λ and all i. We know that v(p,m) = u(x(p,m)). Differentiating both
sides of this equation with respect to pj , we have

∂v(p,m)

∂pj
=
∑
i

∂u(x(p,m))

∂xi

∂xi(p,m)

∂pj
(3)

Substituting from Equation 2 into Equation 3, we have

∂v(p,m)

∂pj
= λ

∑
i

pig
′
i (xi(p,m))

∂xi(p,m)

∂pj
(4)

The budget constraint requires that∑
i

pigi(xi((p,m)) = m

for all p and m. Differentiating both sides of the budget constraint with respect
to pj , we have ∑

i

pig
′
i (xi(p,m))

∂xi(p,m)

∂pj
+ gj (x(p,m)) = 0 (5)

and hence ∑
i

pig
′
i (xi(p,m))

∂xi(p,m)

∂pj
= −gj (x(p,m)) (6)

9



Substituting from Equation 6 into Equation 4, we have

∂v(p,m)

∂pj
= −λgj (x(p,m)) (7)

Now all we have left to do is relate λ to the partial of v with respect to m. To
do this, we differentiate both sides of the equation v(p,m) = u (x(p,m)) with
respect to m.

∂v(p,m)

∂m
=
∑
i

∂u (x(p,m))

∂xi

∂xi(p,m)

∂m
(8)

Substituting from Equation 3 into Equation 8, we have

∂v(p,m)

∂m
= λ

∑
i

pig
′
i (x(p,m))

∂xi(p,m)

∂m
(9)

Finally, differentiate both sides of the budget equation with respect to m.
We find that ∑

i

pig
′
i (x(p,m))

∂xi(p,m)

∂m
= 1 (10)

It follows from Equations 9 and 10 that

∂v(p,m)

∂m
= λ (11)

Now from Equations 7 and 11, it follows that

gj (xj(p,m)) =
−∂v(x(p,m))

∂pj

∂v(p,m)
∂m

(12)

Therefore we have the following analog to Roy’s Law:

xj(p,m) = g−1j

−∂v(x(p,m))
∂pj

∂v(p,m)
∂m

 (13)

In the special case presented in the regular-credit part of the problem, we
had gj(xj) = x2j . Thus we would have

x2j (p,m) =
−∂v(x(p,m))

∂pj

∂v(p,m)
∂m

and

xj(p,m) =

√√√√−∂v(x(p,m))
∂pj

∂v(p,m)
∂m

.
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