First Midterm, Graduate Microeconomic Theory, October 2014

Question 1

Suppose that the n functions $f_{1}(x), \ldots, f_{n}(x)$ are all concave functions from \Re_{+}^{n} to \Re. Define the function $h(x)$ from \Re_{+}^{n} to \Re where

$$
h(x)=g\left(f_{1}(x)+\ldots+f_{n}(x)\right)
$$

with g being an increasing function from \Re to \Re. Answer each of the following questions by either offering a proof or showing a counterexample.
a) Must the function $h(x)$ be concave?
b) Must the function $h(x)$ be quasi-concave?
c) Suppose that the functions f_{i} are quasi-concave, but not necessarily concave, must the function $h(x)$ be quasi-concave?

Question 2

a) Find the Marshallian demand correspondence and the indirect utility function for a consumer with utility function

$$
U\left(x_{1}, x_{2}\right)=x_{1}+2 \sqrt{x_{2}} .
$$

(Be sure to account for possible non-interior solutions.)
b) Find the Marshallian demand correspondence and the indirect utility function for a consumer with utility function

$$
U\left(x_{1}, x_{2}\right)=\sqrt{\left(x_{1}+a\right) x_{2}}
$$

where $a \geq 0$. (Be sure to account for possible non-interior solutions.)
c) Find the Marshallian demand correspondence and the indirect utility function for a consumer with utility function

$$
U\left(x_{1}, x_{2}\right)=\sqrt{x_{1} x_{2}}+2 \sqrt{x_{3}} .
$$

(Hint: One way to tackle this problem is to break it into two pieces. Suppose that at price vector p, the consumer buys x_{3} units of good 3 . Then he will have $m-p_{3} x_{3}$ left to spend on goods 1 and 2 . Use the indirect utility function for someone with utility $\sqrt{x_{1} x_{2}}$ to find the best utility he can achieve if he buys x_{3}. Then find the best x_{3} that he can afford at these prices.) Holding prices constant, how do changes in income affect this consumer's demand for good 3 ?

Question 3 Suppose that $X=\Re_{+}^{3}$ and we define weak preference by $x \succeq y$ if for at least two of the three components, x gives as much of the commodity as y. That is, if $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$ then $x \succeq y$ if $x_{i} \geq y_{i}$ for two or three of $i=1,2,3$.
a) Is \succeq transitive? If so, prove it. If not, show a counterexample.
b) Define strict preference from these weak preferences by the rule: $x \succ y$ if $x \succeq y$ and not $y \succeq x$. Show that \succ defined in this way is equivalent to the following alternative: $x \succ y$ if x gives strictly more than y in at least two components.
c) Is \succ as defined in part b) transitive? Is \succ negatively transitive? (Prove your answers or provide counterexamples)

