
Midterm Examination: Economics 210A
October 2011

The exam has 6 questions. Answer as many as you can. Good luck.

1) A) Must every quasi-concave function must be concave? If so, prove it. If not,
provide a counterexample. (In all answers where you provide a counterexample,
you must show that your example is really a counterexample.)

Answer: Not every quasi-concave function is concave. Here is
a counterexample. Define the function F with domain <+ (the
positive real numbers.) such that F (x) = x2. We show two things:
1) This function is quasi-concave.1 To see this, note that F is a
strictly increasing function on <+. Therefore if F (y) ≥ F (x), it must
be that y ≥ x and hence for any t ∈ [0, 1], ty + (1− t)x ≥ x. Since
F is an increasing function, it follows that F (ty + (1− t)x) ≥ F (x).
Therefore F is quasi-concave. 2) The function F is not concave. To
see this, note that F (2) = 4 and F (0) = 0, but

F (
1

2
2 +

1

2
0) = F (1) = 1 ≤ 1

2
F (2) +

1

2
F (0) = 2.

This cannot be the case if F is a concave function.

B) Must every concave function be quasi-concave? If so, prove it. If not, provide
a counterexample.

Answer: Every concave function is quasi-concave. Proof. If f is
concave, its domain is a convex set A. For all x and y in A, and t
between 0 and 1, if

f(tx + (1− t)y) ≥ tf(x) + (1− t)f(y). (1)

From the Expression 1 it follows that

f(tx + (1− t)y) ≥ f(y) + t (f(x)− f(y)) . (2)

If f(x) ≥ f(y), then it follows from Expression 2 that

f(tx + (1− t)y) ≥ f(y). (3)

which means that f is quasi-concave.

1By the way, F (x) = x2 defined on the entire real line would not be quasi-concave. Can
you show this?
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2) Let F and G be real-valued concave functions with the same domain, A.
Define the function H so that for all x ∈ A, H(x) = F (x) + G(x). Is H a
concave function? If so, prove it. If not, provide a counterexample.

Answer: Since F and G are concave functions with domain A, it
must be that if x ∈ A and y ∈ A, then for all t between 0 and 1,

F (tx + (1− t)y) ≥ tF (x) + (1− t)F (y)

and
G(tx + (1− t)y) ≥ tG(x) + (1− t)G(y)

Given these two inequalities, we see that

H (tx + (1− t)y) = F (tx + (1− t)y) + G(tx + (1− t)y)

≥ tF (x) + (1− t)F (y) + tG(x) + (1− t)G(y)

= t (F (x) + G(x)) + (1− t) (F (y) + G(y))

= tH(x) + (1− t)H(y)

By definition, the left side of Expression 4 equals H(tx + (1− t)y).
The right side of Expression 4 equals tF (x) + tG(x) + (1− t)F (y) +
(1− t)G(y) = tH(x) + (1− t)HY ). Therefore

H(tx + (1− t)y ≥ tH(x) + (1− t)H(y)

for all t between 0 and 1, which means that H is a concave function.

3 Let F and G be real-valued concave functions with the same domain, A.
Define the function H so that for all x ∈ A, H(x) = F (x)G(x).
A) Is H a concave function? If so, prove it. If not, provide a counterexample.

Answer: H is not necessarily concave. For example, let A be the
real line and let F (x) = x and G(x) = x. Both F and G are concave
functions. But H(x) = x2. If a function of a single real variable is
concave, its second derivative is negative or zero everywhere. But
H ′′(x) = 2 > 0, so H is not a concave function.

B) Is H a quasi-concave function? If so, prove it. if not, provide a counterex-
ample.

Answer: H is not in general quasi-concave, but it will be if
F (x) > 0 and G(x) > 0 for all x ∈ A. If this is the case, then
ln H(x) = ln F (x) + ln G(x). Now ln F (x) and ln G(x) are concave
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functions (because a concave function of a concave function is con-
cave). Therefore ln H(x) which is the sum of two concave functions
is concave. It follows that H(x) is a monotone transformation of a
concave function and hence is quasi-concave.

On the other hand, if one of these functions is negative valued,
ln H is not well-defined, so this argument doesn’t work and in fact
H(x) doesn’t have to be quasi-concave when F and G are concave.
For example, suppose that A is the set of all real numbers and
F (x) = −1 for all x, while and G(x) = x−2. Both of these functions
are concave, since their second derivatives are non-positive for all
x. Then H(x) = −G(x) = x2. This function is not quasi-concave.

To see this, note that H(1) = H(−1) = 1, but H
(

1
2
1 + 1

2
(−1)

)
=

H(0) = 0 < H(1).

4) A consumer has preferences represented by the utility function

U(x1, x2) = x1 + x2 + 2x
1/2
2 .

Good 1 is the numeraire and has price 1. The price of good 2 is p2 and the
consumer’s income is m.
A) Find this consumer’s Marshallian demands for goods 1 and 2 as a function
of p2 and m. Be careful to account for corner solutions if there are any.

Answer:The marginal rate of substitution between good 2 and

good 1 is 1 + x
−1/2
2 > 1. At an interior solution, it must be that

p2 = 1 + x
−1/2
2 . This is possible only if p2 > 1. If the consumer

chooses positive amounts of both goods, the Marshallian demands
are

x2(1, p2, m) =

(
1

p2 − 1

)2

.

and

x1(1, p2, m) = m− p2

(
1

p2 − 1

)2

.

There is positive consumption of good 1 if and only if p2 > 1 and

m > p2

(
1

p2−1

)2
. If consumption of good 1 is zero, then x2(1, p2, m) =

m/p2 and x1(1, p2, m) = 0. Consumption of good 2 is always pos-
itive, since the marginal rate of substitution approaches infinity as
x2 approaches zero.

B) Use your solution to Part A and the relevant homogeneity property of Mar-
shallian demand to find this consumer’s demands for goods 1 and 2 for arbitrary
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non-negative prices p1, p2, and income m. (Simplify your expressions for an-
swers as much as possible.)

Answer: Since demand is homogeneous of degree zero in prices
and income, it must be that

xi(p1, p2, m) = xi(1,
p2

p1

,
m

p1

)

Therefore it follows from the answers to Part A that at an interior
solution,

x2(p1, p2, m) =

 1
p2

p1
− 1

2

=

(
p1

p2 − p1

)2

x1(p1, p2, m) =
m

p1

− p2

p1

 1
p2

p1
− 1

2

=
m

p1

− p1p2

p2 − p1

C) Find this consumer’s Hicksian demand functions h1(p1, p2, u) and h2(p1, p2, u).
Be careful to account for corner solutions if there are any.

Answer: At an interior solution,

h2(p1, p2, u) =

(
p1

p2 − p1

)2

and

h1(p1, p2, u) = u− h2(p1, p2, u)− 2h2(p1, p2, m)1/2

= u−
(

p1

p2 − p1

)2

− 2

(
p1

p2 − p1

)

= u−

( p1

p2 − p1

+ 1

)2

− 1


= u + 1−

(
p2

p2 − p1

)2

From 4 we see that there will be an interior solution if and only
if

u + 1 >

(
p2

p2 − p1

)2

.
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If

u + 1 <

(
p2

p2 − p1

)2

,

then h1(p1, p2, u) = 0 and u = h2(p1, p2, u) + 2
√

h2(p1, p2, u). The
right side of the second equation is a strictly increasing function of
h2, which means that for any specified (p1, p2, u), there is a unique
solution for h2(p1, p2, u). However, this solution does not have a
simple closed form expression.

D) Find this consumer’s expenditure function e(p1, p2, u).

Answer:

e(p1, p2, u) = p1h(p1, p2, u) + p2h2(p1, p2, y).

We can write this out in detailed form using the results of Section
C. For an interior solution, we have

e(p1, p2, u) = p1

u−
(

p2

p2 − p1

)2

+ 1

+ p2

(
p1

p2 − p1

)2

= p1(u + 1) +
p2p

2
1 − p1p

2
2

(p2 − p1)2

= p1(u + 1)− p1p2

p2 − p1

(4)

E) Verify that Shephard’s lemma applies in this case.

Answer: We will show this for the case of interior solutions. Ac-
cording to Shephard’s lemma,

∂e(p1, p2, u)

∂pi

= hi(p1, p2, u).

Differentiating the expression in Part D with respect to p2, we have

∂e(p1, p2, u)

∂p2

=
−(p2 − p1)p1 + p1p2

(p2 − p1)2
=

p2
1

(p2 − p1)2
.

We found in part C that

h2(p1, p2) =
p2

1

(p2 − p1)2
.
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Thus we see that Shephard’s lemma applies for good 2.
Differentiating the expression in Part D with respect to p1, we

have

∂e(p1, p2, u)

∂p1

= u1 + 1− (p2 − p1)p2 + p1p− 2

(p2 − p1)2

= u + 1−
(

p2

(p2 − p1)

)2

We found in Part C that

h1(p1, p2, u) = u + 1−
(

p2

(p2 − p1)

)2

.

This verifies that Shephard’s lemma holds for good 2.

5) A consumer has utility function

u(x1, x2) = min{v1(x1, x2), v2(x1, x2)}

where v1 and v2 are both quasi-concave functions Is u quasi-concave? If so,
prove it. If not, provide a counterexample.

Answer: Credit to Irving Fernandez and Serena Canaan for the
most elegant answers to this one.

Note that the assumption that vi is concave means that for i =
1, 2,

vi(tx + (1− t)y) ≥ min{vi(x), vi(y)}.
Now

u(tx + (1− t)y) = min{v1(tx + (1− t)y, v2(tx + (1− t)y)}
≥ min{min{v1(x), v1(y)}, min{min{v2(x), v2(y)}
= min{min{v1(x), v2(x)}, min{min{v1(y), v2(y)}
= min{u(x), u(y)}

This implies that u is quasi-concave.
The clever key step in this argument is the step from line 2 to

line 3. Can you explain why one is justified in taking this step?

6) A sculpture is placed on top of a horizontal grid. The height of
the sculpture above the point on the grid with coordinates (x1, x2)
is x2

1−3x1x2 +x2
2. An ant is crawling on the surface of the sculpture.
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A) If the ant is initially at the point directly above the point (2, 1)
on the grid, what is the directional derivative of the height of the
ant if it is crawling on the surface of the sculpture in the direction
( 1√

5
, 2√

5
) as measured on the grid?

Answer: The gradient of the height of the sculpture at the point
(2, 1) is (2x1 − 3x2,−3x1 + 2x2) = (1,−4). The directional deriva-
tive in the direction ( 1√

5
, 2√

5
) is the inner product of this directional

vector with the gradient. This is equal to −7√
5
.

B) In what direction on the surface should the ant crawl if it wants
to climb most steeply? (Hint: Directions should be described by a
vector whose length is 1 unit.)

Answer: If the ant wants to climb most steeply, it should climb

in the direction of the gradient. That direction is
(

1√
17

, −4√
17

)
.

C)In what direction should it crawl if it wants to descend most
steeply?

Answer: To descend most steeply, it should crawl in the oppo-
site direction from the gradient. This is ( −1√

17
, 4√

17
).

D) If the ant is moving along the surface of the statue in the direction
of steepest climb at the rate of one unit per second, at what rate is
its height above the ground increasing?

Answer: The answer is the inner product of the gradient with
the vector representing the direction of steepest climb. The initial
rate of ascent if the ant crawls in the direction of the gradient is
the inner product of the gradient vector (1,−4) with the direction

of steepest ascent which is
(

1√
17

, −4√
17

)
. This inner product is equal

to

1× 1√
17

+ (−4)× −4√
17

=
√

17.
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