
Microeconomic Foundations I:
Choice and Competitive Markets

Student’sGuide
Chapter 1: Choice, Preference, andUtility
This chapter discusses the basic microeconomic models of consumer choice, preference,
and utility. It is very abstract, consisting primarily of proofs of mathematical (deduc-
tive) propositions. If you are rusty at reading (and constructing) mathematical proofs,
it may be painful. If you are rusty, or if you haven’t done anything like this before,
please take it slow. Be sure to follow the details of the proofs one step at a time; it
helps to have a pad and pen or pencil by your side, so you can follow along, make
notes, finish arguments, and so forth. This recommendation extends to the entire book
and, indeed, to any book or article you are reading that is mathematical in character.
But it comes with a complementary recommendation: If you read carefully and slowly
for details, you may lose the “plot line,” which is just as important. So my suggestion
is to read this sort of thing at least twice, with pad and pen or pencil each time: First,
read to get the big picture. What is the framework? What are the results? How do
the results tie together? And then go back and read for the details: How is each step
done?

In a few places, I leave the proofs of propositions for you to complete; unless you
are very confident in your ability to do this, you should write out proofs and have
them checked by someone—a peer, a TA, your instructor—who is well versed in this
skill. Constructing mathematical proofs is a skill you learn best—and perhaps only—
by doing. (The proof of Proposition 1.19 will arrive in Chapter 2. Try it if you wish,
but it takes considerable mathematical sophistication.)

On pedagogical grounds, it would be nice to begin with something more concrete.
But this is the logical starting point for consumer theory, which in turn is the logi-
cal starting point of microeconomics. Persevere until Chapter 3, and you’ll get to an
application—the theory of the consumer—that isn’t quite so abstract.
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document for their personal use. Instructors in courses usingMicroeconomic Foundations I: Choice and Competitive
Marketsmay print multiple copies for distribution to students and teaching assistants, or to put on reserve for the
use of students, including copies of the solution to individual problems, if they include a full copyright notice.
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Summary of the Chapter
The chapter is about the standard economic model of consumer choice.

1. A set of objects of choice, X , is given.

2. A choice function c is given that, for each nonempty subset A of X , tells us the set
of objects c(A) the consumer would be content to have. We require that c(A) ✓ A .
We allow for the possibility that c(A) = ; . The consumer gets only one element
out of A ; if c(A) contains more than one element, the interpretation is that the con-
sumer would be equally happy with any one. A more general formulation would
have as domain of c some collection A of nonempty subsets of X , but for the
balance of this chaper, we simplify by assuming that c(A) is defined for all the
nonempty subsets A of X , and we let A denote this domain.

3. The preferences of the consumer are specified by a binary relation ⌫ , where x ⌫ y
(for x and y from X ) is read “x is as good as or better than y” or as “x is weakly
preferred to y.” Choice is generated by the preferences ⌫ if, for all A ,

c(A) = {x 2 A : x ⌫ y for all y 2 A}. (1.2)

(Equation numbers are out of order here, so that they conform to the numbers in
the text.)

4. A utility function for the consumer is a real-valued function u : X ! R , with the
interpretation that the consumer regards items of higher utility as better. In accor-
dance with this interpretation, we say that u represents the preference relation ⌫
if

x ⌫ y if and only if u(x) � u(y). (1.3)

And the choice function c is generated by utility maximization with the utility
function u if, for all A ,

c(A) = {x 2 A : u(x) � u(y) for all y 2 A.} (1.1)

Most economic models have consumers who are utility maximizers or, at least,
preference driven. The point of the chapter, then, is to say when choice behavior, given
by a choice function c , is generated by preferences or by utility maximization for some
utility function. The basic answers, in the context of a finite set X , are given by Defi-
nition 1.1 and Proposition 1.2:

Definition 1.1.
a. A choice function c satisfies finite nonemptiness if c(A) is nonempty for every finite A 2

A .
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b. A choice function c satisfies choice coherence if, for every pair x and y from X and A
and B from A , if x, y 2 A \B , x 2 c(A) , and y 62 c(A) , then y 62 c(B) .

c. A preference relation on X is complete if for every pair x and y from X , either x ⌫ y
or y ⌫ x (or both).

d. A preference relation on X is transitive if x ⌫ y and y ⌫ z implies that x ⌫ z .

Proposition 1.2. Suppose that X is finite.

a. If a choice function c satisfies finite nonemptiness and choice coherence, then there exist
both a utility function u : X ! R and a complete and transitive preference relation ⌫ that
produce choices according to c via the formulas (1.1) and (1.2), respectively.

b. If a preference relation ⌫ on X is complete and transitive, then the choice function it pro-
duces via formula (1.2) satisfies finite nonemptiness and choice coherence, and there exists a
utility function u : X ! R such that

x ⌫ y if and only if u(x) � u(y). (1.3)

c. Given any utility function u : X ! R , the choice function it produces via formula (1.1)
satisfies finite nonemptiness and choice coherence, the preference relation it produces via
(1.3) is complete and transitive, and the choice function produced by that preference relation
via (1.2) is precisely the choice function produced directly from u via (1.1).

In words, choice behavior (for a finite X ) that satisfies finite nonemptiness and choice
coherence is equivalent to preference-maximization (that is, formula (1.2)) for complete
and transitive preferences, both of which are equivalent to utility-maximization (via
formulas (1.1) and (1.3)). Whether expressed in terms of choice, preference, or utility,
this conglomerate (with the two pairs of assumptions) is the standard model of con-
sumer choice in microeconomics.

The chapter goes on to prove and generalize Proposition 1.2, and to provide com-
plements to it. This includes the following:

1. Those results that extend automatically to infinite sets X are extended.

2. For a complete and transitive preference relation ⌫ , strict preference � is defined
by x � y if x ⌫ y and not y ⌫ x , and indifference ⇠ is defined by x ⇠ y if x ⌫ y
and y ⌫ x . Properties of these two relations are derived, and the derivation of ⌫
from � is discussed.

3. Define the no better than x set NBT(x) := {y 2 X : x ⌫ y} . If ⌫ is complete and
transitive, then x ⌫ y if and only if NBT(y) ✓ NBT(x) , with strict set inclusion if
and only if x � y . The no-better-than sets are used in many ways; in particular,
they allow the construction of utility functions that represent ⌫ .

4. Utility representations for infinite sets X are considered. Necessary and sufficient
conditions on a complete and transitive binary relation on (infinite) X to have a



SG-1.4 Student’s Guide Chapter 1: Choice, Preference, and Utility

utility representation are provided; then the important special case of continuous
preferences when X is a (nice) subset of finite dimensional Euclidean space (Rk ) is
discussed in detail.

5. The phenomenon of c(A) = ; for infinite sets A is discussed.

6. The relationship between two different utility functions for the same preferences
is given, making in particular the point that utility numbers (in this chapter) have
only ordinal and not cardinal significance.

7. A number of comments, extensions, variations, and criticisms of the standard model
are provided.

Solutions to Starred Problems
1.1. In case you had problems producing a counterexample, consider the four bottles

x = California Red for $20, x0 = French white for $20, x00 = California Red for $25, and
x000 =French red for $30. With this list of bottles, you can produce a counterexample to
the choice coherence axiom, using either two wine lists of three bottles apiece, or one
having three bottles and another having two.

Here is one example:

From the wine list L1 = {x, x0, x00} , my friend’s choice algorithm proceeds as follows:
Two California bottles and one French, so take a California bottle. Two California reds,
so take a red. Take the most expensive California Red, which is x00 . Thus c({x, x0, x00}) =
{x00} .

From the wine list L2 = {x0, x00, x000} , he reasons: One California and two French, so
take one of the French. Of the two bottles of French wine, one is white and one red.
He must invoke his tie-breaking rule, which leads him to choose white. Since there is
only one bottle of French white on the list, he chooses that: c({x0, x00, x000}) = {x0} .

This constitutes a violation of choice coherence. Both x0 and x00 are available on both
wine lists, and x0 but not x00 is chosen from the second list while x00 and not x0 is
chosen from the first.

1.3. It is easy to see that ⌫⇤ is complete: For any x and y , since ⌫Larry is complete,
either x ⌫Larry y or y ⌫Larry x , which immediately imply x ⌫⇤ y and y ⌫⇤ x , respec-
tively.

To see that ⌫⇤ is not transitive, suppose that X has three elements, x , y , and z . Sup-
pose Larry ranks the three x �Larry y �Larry z , while Moe ranks them y �Moe z �Moe x .
Then z ⌫⇤ x , because Moe likes z at least as much as x . And x ⌫⇤ y , because Larry
likes x at least as much as y . But it is not true that z ⌫⇤ y , because both Larry and
Moe think that y is strictly better than z .

1.6. (a) Suppose that x ⌫ y and y ⌫ z for x = (x1, . . . , xk) , y = (y1, . . . , yk) , and
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z = (z1, . . . , zk) . Then xi � yi and yi � zi for each i . Hence, by transitivity of � for
real numbers, xi � zi for all i , and thus x ⌫ z . This shows that ⌫ is transitive.

On the other hand, for k = 2, x = (1, 2), and y = (2, 1), neither x ⌫ y nor y ⌫ x ; ⌫ is
not complete.

(b) x � y if x ⌫ y and not y ⌫ x , which is xi � yi for all i , and not yi � xi for all i ,
which is xi � yi for all i , and xi > yi for some i .

This is asymmetric: If x � y , then xi > yi for some i . Thus neither y ⌫ x nor y � x
are possible.

But this is not negatively transitive: Take x = (2, 2), z = (1, 1), and y = (3, 0). We have
x � z , but neither x � y nor y � z is true.

(c) x ⇠ y if x ⌫ y and y ⌫ x , which is xi � yi and yi � xi for all i , which is xi = yi

for all i . Thus we have
x ⇠ y if and only if x = y .

This is clearly reflexive, symmetric, and (trivially) transitive.

1.7. As suggested in the hint, the first thing to do is to characterize what not y ⌫ x
means. For y ⌫ x , two (or more) of y ’s three components must be at least as large
as the corresponding components of x . For this to fail, two (or more) of those three
components must be strictly less than the corresponding components of x . Thus
not y ⌫ x is equivalent to

two or more of x ’s components strictly exceed y ’s corresponding components.

(If you couldn’t solve this problem because you didn’t get this far, assume the charac-
terization above and try parts (a) and (b) again.) If you aren’t satisfied with this verbal
argument, a very formal argument can be given, but it is gruesome. Here it is:

(i) y ⌫ x by definition is [y1 � x1 and y2 � x2 ] or [y1 � x1 and y3 � x3 ] or [y2 � x2 and
y3 � x3 ].

(ii) Not [a or b or c] is [not a] and [not b] and [not c], so not y ⌫ x is

[not [y1 � x1 and y2 � x2]] and [not [y1 � x1 and y3]] and [not [y2 � x2 and y3 � x3]].

(iii) The negation of a and b is not a or not b, and the negation of a � b is b > a , for real
numbers a and b , so not y ⌫ x is

[x1 > y1 or x2 > y2] and [x1 > y1 or x3 > y3] and [x2 > y2 or x3 � y3].

(iv) This, in turn, has the form [↵ or � ] and [↵ or � ] and [� or � ]. Either by consid-
ering the two cases ↵ and not ↵ or by constructing a Venn diagram, you can show
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that this is the same as [↵ and � ] or [↵ and � ] or [� and � ]; i.e., two of the three
must be true. Translating this back to the components of x and y , this is the desired
conclusion.

As promised, this is rather gruesome, and you probably came to the correct conclusion
without all these details, but if you are a freak for mathematical rigor, the mess just
previous should make you happy.

(a) With this result, however obtained, the problem is easy. First, to show that ⌫ is
complete, take any x and y . If it is not the case that y ⌫ x , then x strictly exceeds y
in at least two components, and so x ⌫ y . Thus ⌫ is complete.

To show that ⌫ is not transitive, an example will do: (2, 2, 1) ⌫ (1, 1, 3), and (1, 1, 3) ⌫
(3, 0, 2), but it is not true that (2, 2, 1) ⌫ (3, 0, 2).

(b) Since not y ⌫ x implies x ⌫ y (see just previously), x � y is equivalent to not
y ⌫ x , which we saw means that x strictly exceeds y in at least two components. This
is clearly asymmetric: If x exceeds y in at least two components, then y can strictly
exceed x in at most one. But negative transitivity fails, and the same example as we
used before will work: (2, 2, 1) � (1, 1, 3), but if the third bundle is (3, 0, 2), then nei-
ther (2, 2, 1) � (3, 0, 2) nor (3, 0, 2) � (1, 1, 3).

1.10. Let x = (x1, x2) and y = (y1, y2) . If x1 /= y1 , then either x1 > y1 , in which case
x ⌫ y , or y1 > x1 , in which case y ⌫ x . And if x1 = y1 , then either x2 � y2 , implying
x ⌫ y , or y2 � x2 , implying y ⌫ x . Thus ⌫ is complete.

Suppose that x = (x1, x2) ⌫ y = (y1, y2) , and y ⌫ z = (z1, z2) . Since x ⌫ y , either
x1 > y1 or [x1 = y1 and x2 � y2 ]. Similarly, y ⌫ z implies either y1 > z1 or [y1 = z1 and
y2 � z2 ]. It is boring, but the easiest way to proceed is to take all four = two-by-two
cases seriatum:

Case 1: x1 > y1 and y1 > z1 . In this case x1 > z1 , so x ⌫ z .

Case 2: x1 > y1 and [y1 = z1 and y2 � z2 ]. In this case x1 > z1 , so x ⌫ z .

Case 3: [x1 = y1 and x2 � y2 ] and y1 > z1 . In this case x1 > z1 , so x ⌫ z .

Case 4: [x1 = y1 and x2 � y2 ] and [y1 = z1 and y2 � z2 ]. In this case x1 = z1 and
x2 � z2 , so x ⌫ z .

In all four possible cases, we conclude x ⌫ z , so ⌫ is transitive.

To show that there is no numerical representation, we could prove that no countable
set X⇤ as is required for a numerical representation can be found. This is relatively
easy to do: For every real number r 2 [0, 1], consider the points xr = (r, 0.8) and
yr = (r, 0.2). By the definition of the preference relation, xr � yr , so if a set X⇤ existed,
it would have to contain a point x⇤r that lies between these two, perhaps tied with xr .
The set of candidates for x⇤r is {(r, q) : 0.8 � q > 0.2} . But this implies that for any two
different real numbers r and r0 , x⇤r /= x⇤r0 , and since there are uncountably many r , the
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set X⇤ must have an uncountable number of elements.

An alternative proof is a bit more direct. Assume that u is a numerical representation
for ⌫ . Since for every r 2 [0, 1], xr = (r, 0.8) � (r, 0.2) = yr , it follows that u(xr) >
u(yr) . But then, since the rationals are dense in the real line, it follows that for every
r 2 [0, 1], there is a rational number qr in the open interval (u(yr), u(xr)) . This would
constitute a one-to-one map from the the unit interval [0, 1] onto the rational numbers,
which of course cannot be, since there are uncountably many elements of [0, 1] and
only countably many rationals.

1.11. The first step is to show that c holds if and only if d holds. Note that if ⌫ is com-
plete and transitive, then for all pairs x and y , either x ⌫ y or y � x , but never both.
Therefore, the sets NBT(x) = {y 2 Rk

+ : x ⌫ y} and SBT(x) = {y 2 Rk
+ : y � x}

are complements, and NWT(x) and SWT(x) are complements. Hence, the sets NBT(x)
and NWT(x) are both closed if and only if their complements, SBT(x) and SWT(x) are
(relatively) open.

Next I’ll show that c and d imply the original definition: (This is by far the longest step.)
Suppose x � y . I need to produce a w such that x � w � y . Here is one way to do it:
Look at all convex combinations of x and y , ax + (1� a)y , for a 2 [0, 1]. Since c holds
for ⌫ , the set NWT(x) is closed, and therefore NWT (x) \ {ax + (1 � a)y : a 2 [0, 1]}
is a closed set. This intersection contains a = 1 and does not include a = 0 and, being
closed, it contains its infimum (in terms of a); that is, if we let a⇤ = inf{a 2 [0, 1] :
ax + (1 � a)y ⌫ x} , we know that a⇤x + (1 � a⇤)y ⌫ x , a⇤ > 0, and, for all a 2 [0, a⇤) ,
x � ax + (1 � a)y . Since the set NBT(x) is also closed, and a⇤x + (1 � a⇤)y can be
approached by points all in NBT(x) (namely, ax + (1 � a)y for a < a⇤ ), we know that
x ⌫ a⇤x+(1�a⇤)y ; we conclude that a⇤x+(1�a⇤)y ⇠ x � y . Let z denote a⇤x+(1�a⇤)y .
Now repeating the argument (but with inequalities reversed), we can find a b⇤ < 1
such that b⇤z + (1� b⇤)y ⇠ y and bz + (1� b)y � y for all b 2 (b⇤, 1]. Let w = bz + (1� b)y
for any b 2 (b⇤, 1); note that w is a convex combination of x and y with weight less
than a⇤ on x , so putting everything together, we know that x � w � z .

Now that I have w , the rest of this step is easy. I know that x 2 SBT(w) and this set
is open, there is an open neighborhood of x , say all x0 within ✏1 > 0 of x , that is in
SBT(w) . And I know that y 2 SWT(w) and this set is open, so for some ✏2 > 0, every
y0 within ✏2 of y is in SWT(w) . But then letting ✏ = min{✏1, ✏2} , for all x0 within ✏ of
x and y0 within ✏ of y , x0 � w � y0 , and by transitivity, x0 � y0 .

Now to show that the definition implies b: Suppose {xn} is a sequence with limit x and
x � y . Per the definition, we can find ✏ > 0 so that all x0 within ✏ of x and all y0

within ✏ of y , x0 � y0 . Taking y0 = y , this tells us that all x0 within ✏ of x satisfy x0 �
y . But since the sequence has limit x , for all sufficiently large n , xn will be within ✏
of x . The other half is similar.

Next, I’ll show that b implies a. Suppose that b holds, {xn} is a sequence with limit x ,
and xn ⌫ y for all n If it is not true that x ⌫ y , then y � x must be true. But if b
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holds, then y � x and limn xn = x , then it must be that y � xn for all sufficiently
large n . To the contrary, the assumption is that xn ⌫ y for all n . We’ve derived a
contradiction to the assumption that x 6⌫ y . The argument for the other half is similar.

To conclude, I have to show that a implies c and d. It should be clear that showing a
implies c is the way to go: To prove that NBT(x) is closed, I’ll show that it contains all
its limit points: Suppose {yn} is a sequence drawn from NBT(x) with limit y . Then
x ⌫ yn for each n . But then a tells us that x ⌫ y , and y 2 NBT(x) . The other half is
similar.

1.13. The proposition concerns the choice function c , so the first step is to note that
since c satisfies nonemptiness, choice coherence, and Assumption 1.16, Proposition 1.17
tells us the c ⌘ c⌫c . So to show that c(A) /= ; for every compact A , we must show
that, for each compact A , c⌫c(A) = {x 2 A : x ⌫c y for all y 2 A} is nonempty. (We
know, of course, that ⌫c is complete and transitive, and the problem tells us to assume
that ⌫c is continuous.)

So suppose, by way of contradiction, that for some compact set A , {x 2 A : x ⌫c y
for all y 2 A} is empty. That is, for every x 2 A , there is some y 2 A such that
x 6⌫c y , or y �c x . This means that for every x 2 A , there is some y 2 A such that
x 2 SWT(y) = {z 2 X : y �c z} . So if we look at the union [y2A SWT(y) , this union
contains all of A ; the sets SWT(y) for y 2 A constitute a cover of A .

But Proposition 1.14 tells us that, if preferences ⌫ are continuous, then the strictly
worse than y sets SWT(y) are all (relatively) open. Among the characterizations of
compactness—in some sense, the basic characterization—is that for any compact set,
every open cover of the set has a finite subcover. That is, for some finite collection
{y1, . . . , yn} from A , A is a subset of the union of the SWT(yj) . We know that c⌫c({y1, . . . , yn})
is nonempty from the finite nonemptiness property, so there is some k = 1, . . . , n such
that yk ⌫c yj for j = 1, . . . , n . But this yk 2 A , so it must be in some SWT(yj) for some
j . This is a contradiction; yk 2 SWT(yj) means that yj �c yk . But yk was chosen to
satisfy yk ⌫c yj for all j . We have the desired contradition; there must be some x 2 A
such that x ⌫c y for all y 2 A , and c(A) = c⌫c(A) is nonempty. (Where in this proof
did I use the very necessary assumption that A is nonempty?)

1.16. (a) The idea here is simple, once you see the trick. For any set X , consider the
weak preferences ⌫0 given by x ⌫0 y for all x and y in X . That is, everything is
weakly preferred to everything, thus the consumer is indifferent among all options.
For these preferences, c⌫0 (A) = A for all A . And as long as we see the consumer mak-
ing a single choice from any set A , we have no evidence against the theory. If we can’t
infer something about strict preference from the observable data, the theory has no im-
plications.

One way we learn about strict preferences from the data is if the data purport to show,
for each A , the entire set c⌫(A) . Then if x 62 c⌫(A) , we infer that y � x for every
y 2 c⌫(A) . This is the case we deal with in part (b) of this problem. Another way is
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coming in Chapter 4; as foreshadowing for this, I describe this alternative, although
my description may not make sense to you until you get to Chapter 4: In Chapter 4,
we will make inferences about strict preferences under a joint hypothesis that the con-
sumer’s observed choices are preference-driven and the consumer is locally insatiable.
Therefore if there is a ball of positive diameter around the point x , all of which is con-
tained in A , and if what is chosen from A is some distance from x , then we know
that there is something in A that is strictly preferred to x (local insatiability) which
was not chosen, hence what was chosen is at least as good as something that is strictly
preferred to x , and thus the thing chosen must be strictly better than x .

(b) Suppose X = {x, y, z} , and we observe the following choices out of the three two-
element sets:

c({x, y}) = {x}, c({y, z}) = {y}, and c({x, z}) = {z}.

(If you didn’t get this far, see if you can finish the argument from here. You have to
show (a) that there are no direct violations of choice coherence in these data, and (b)
these data are inconsistent with preference–driven choice; i.e., there is no complete and
transitive ⌫ that, if used to choose, would produce these data.)

The argument that there is no direct violation of choice coherence in these data is: We
never have two distinct sets A and B and two distinct elements w and v such that
both w and v are in both A and B . Since the if part of Houthakker’s axiom is never
satisfied by these data, the axiom has no content for these data.

Nonetheless, if these data could be explained by some complete and transitive prefer-
ences ⌫ , c({x, y}) = {x} would mean that x � y must be true, c({y, z}) = {y} would
imply y � z , and c({x, z}) would imply z � x . Since strict preference is transitive
(Proposition 1.9), this would imply x � x , which violates the asymmetry of � . Hence
these data are inconsistent with our standard model of choice driven by complete and
transitive weak preferences.

(c) Fixing X and c , define (for A ✓ X ) b(A) = A\c(A) . That is, b(A) is the set of ”bad”
(really, less than best) elements out of A .

Suppose the data are consistent with choice according to some complete and transitive
⌫ . Then x ⌫r y implies x ⌫ y : if x ⌫r y , then for some k , x 2 c(Ak) while y 2 Ak .
But if c is consistent with choice according to ⌫ , x 2 c(Ak) implies that x ⌫ z for all
z 2 Ak , and this includes y .

Moreover, x �r y implies x � y : x �r y implies that, for some Ak containing both x
and y , x 2 c(Ak) but y 62 c(Ak) . The former implies that x ⌫ z for all z 2 Ak . Now if
x 6� y , then y ⌫ x , and by transitivity of ⌫ , y ⌫ z for all z 2 Ak , which would imply
y 2 c(Ak) , a contradiction.

So suppose the data violate SGARP. This means there is some set {x1, . . . , xm} that
xi ⌫r xi+1 for i = 1, . . . ,m � 1 and xm ⌫r x1 . But then by the previous two para-
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graphs, xi ⌫ xi+1 for i = 1, . . . ,m � 1, and so by transitivity of ⌫ , x1 ⌫ xm , which
contradicts xm � x1 . Any violation of SGARP rules out the possibility that c(·) can be
rationalized by a complete and transitive ⌫ , which is the first half of Proposition 1.23.

The second half of the proposition, that no violations of SGARP means that the data
are consistent with some ⌫ , is a good deal harder. Because it is easy to get lost in the
details of the proof, I will take it in steps, by first proving and then applying an ab-
stract lemmas.

The lemma concerns a finite set of objects K , on which is defined a pair of binary re-
lations, P and I . A binary relation (in case you don’t know) is a mathematical object
that concerns pairs of elements of a given set. For k and k0 from K , we write kPk0

if k stands in relation P to k0 , and we write not kPk0 if not. Examples of binary re-
lations are weak preference, strict preference, and indifference. But there are many
others, such as: If K is the set of all students in a class, we might define a binary re-
lation B by kBk0 if k is the brother of k0 . Note that order is important; it is certainly
possible that kBk0 and not k0Bk (if, for example, k0 is k ’s sister). Or, to take another
example, in the binary relation � , order is crucial. In fact, � is asymmetric, meaning
that x � y implies that not y � x .

The binary relations P and I on the finite set K have the following properties:

Property 1: kPk0 implies not kIk0 . (By contraposition, the reverse is true as well.)

Property 2: I is reflexive. That is, for all k 2 K , kIk . (Note that this, together with
property 1, implies that for no k is it true that kPk .)

Property 3: I is symmetric. That is, for all k and k0 2 K , kIk0 implies k0Ik .

Property 4: (a) Both I and P are transitive; (b) kPk0 and k0Ik00 implies kPk00 ; and (c)
kIk0 and k0Pk00 implies kPk00 .

(If you need a concrete example to think about, think of P as something like revealed
strict preference and I as revealed indifference, or see below.)

Lemma G1.1. Suppose that binary relations P and I on a finite set K satisfy properties 1
through 4. Then there exists a function V : K ! R such that kPk0 implies V (k) > V (k0)
and kIk0 implies V (k) = V (k0) .

This is like numerical representation of P and I , except that the implications run one
way only.

Proof of the lemma. For each k 2 K , let

W(k) = {k00 2 K : kPk00},

and let V (k) be the number of elements in W(k) .

Suppose kIk0 . Then k0Ik (by property 3) and so if k00 2 W(k) , kPk00 and hence k0Pk00

(by property 4(c)). Thus k00 2 W(k0) . By the symmetric argument, if kIk0 , then W(k) =
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W(k0) , and therefore V (k) = V (k0) .

Suppose kPk0 . Then k0 2 W(k) by definition. We know (see the parenthetical remark
in property 2) that not k0Pk , and thus k 62 W(k0) . Moreover, for all k00 2 W(k0) , k0Pk00

and thus by property 4(a), kPk00 . So W(k0) is a strict subset of W(k) , and V (k) >
V (k0) .

Now we return to the proof of the second half of Proposition 1.23. Recall where we
are: We know c(Ak) for a finite number of sets Ak , k = 1, 2, . . . , n , and we know that
these data admit no violations of SGARP.

To apply the lemma, we let K = {1, 2, . . . , n} , and we define:

(1) kIk0 , if there is a finite sequence k = k1, . . . , km = k0 such that c(Aki) \ c(Aki+1 ) /= ; ,
for i = 1, . . . ,m� 1.

(2) kPk0 , if there is a finite sequence k = k1, . . . , km = k0 such that c(Aki+1 ) \Aki /= ; , for
i = 1, . . . ,m� 1, and c(Aki+1 ) \ b(Aki) /= ; for at least one i .

We must show that properties 1 through 4 hold in this case:

It is easiest to begin with reflexivity and symmetry of I ; i.e., properties 2 and 3. The
symmetry of I is clear, because the definition of I is symmetric in k and k0 . As for
reflexivity, take m = 1 (so there is a single element in the sequence) and apply the
definition trivially.

For property 1, suppose kPk0 and kIk0 . If kPk0 , there is a finite sequence k = k1, . . . , km =
k0 such that c(Aki+1 ) \ Aki /= ; , for i = 1, . . . ,m � 1, and c(Aki+1 ) \ b(Aki) /= ; for
at least one i . Let xki be the element of c(Aki+1 ) \ Aki for all i and the element of
c(Aki+1 ) \ b(Aki) for at least one i . Let xk1 be any element of c(Ak1 ) . Then xki ⌫r xki+1

for all i , and xki �r xki+1 for the distinguished i . We can similarly use k0Ik to con-
struct a sequence of revealed weak preferences from xkm back to xk1 . But putting the
two sequences of revealed weak preferences, one with a revealed strict preference in at
least one step, would be a violation of SGARP.

Property 4 holds by construction. All four forms of “transitivity” called for in the prop-
erty involve stringing together pairs of sequences used to define I and P and not-
ing that: Two sequences that define I can be strung together to give another that de-
fines I , and any two, as long as one has a strict revealed preference (i.e., is used for
P ) when strung together gives a sequence that defines P .

Hence we can apply the lemma and know that there is a function V : K ! R such
that kPk0 implies V (k) > V (k0) and kIK0 implies V (k) = V (k0) . Let L be any number
strictly less than V (k) for all k . Define U : X ! R by

U (x) =
⇢

V (k), if x 2 c(Ak) for some k, and
L, if x 62 c(Ak) for all k.
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We must be sure that this is well-defined; i.e., if x 2 c(Ak) \ c(Ak0) , then V (k) = V (k0) .
But if x 2 c(Ak) \ c(Ak0) , then kIk0 , and V (k) = V (k0) follows.

Now define ⌫ as the weak preferences given by U . Obviously, ⌫ is complete and
transitive. We are done if we show that for each k , c(Ak) = c⌫(Ak) .

To do this, fix Ak . The set c⌫(Ak) contains all those elements of Ak that have the
highest values according to U . By construction, all elements of c(Ak) have the same
value, namely V (k) . So we need only show that no x 2 b(Ak) has higher value than
V (k) . But this is easy. If x 62 c(Ak0) for any other k0 , then U (x) = L < V (k) . Suppose
x 2 c(Ak0) Since x 2 b(Ak) , we know that kPk0 . Thus U (x) = V (k0) < V (k) . Done.

You are probably exhausted from all this work, but let me make a few remarks. First,
the idea is not that hard: Because of SGARP, we are able to induce a revealed pref-
erence ordering among the c(Ak) . We select a utility function that reflects that order-
ing, giving everything that is never selected some utility less than anything that is ever
selected (in the data). The hard part is in getting the right definition for the revealed
preference ordering and showing that this is enough to produce a numerical repre-
sentation. The structural properties needed to produce a numerical representation are
properties 1 through 4, and the lemma and proposition establish the existence of the
ordering. The definitions of I and P in this case, and the demonstration that SGARP
implies property 1 for this definition, show that these structural properties hold.

Things are slightly easier if you assume that X is finite, as then you can work directly
with X in the role of K . If you were able to do that much, you were doing quite well.

The adjective “simple” will be removed from GARP in Chapter 4, where we reconsider
this result (and extend it) for the case of demand data.


