Some Properties of Indirect Utility.

- If preferences be represented by a continuous strictly increasing function defined on ℜⁿ₊, then for any price vector p ∈ ℜ₊₊ there is a well-defined function v(p, m) which is {max u(x)|px ≤ m}. (How do we know this?)
- ▶ v(p, m) is homogeneous of degree 0 in (p, m). (Prove it.)
- v(p, m) is strictly increasing in m and non-increasing in p. (Prove it.)

- v(p, m) is a quasi-convex function.
- v(p, m) is a continuous function.

Quasi-convexity of indirect utility

- ▶ Where A is a convex subset of \Re^n , a function $f : A \to \Re$ is quasi-convex if for all x and y in A, and all $\lambda \in [0, 1]$, $f(\lambda x + (1 \lambda)y) \le \max\{f(x), f(y)\}$. (Note that f is quasi-convex iff -f is quasi-concave.)
- Show that v(p, m) is quasi-convex.
 - Let x^{λ} maximize u(x) subject to $(\lambda p + (1 - \lambda)p')x \leq \lambda m + (1 - \lambda)m'.$
 - Rearranging terms, we see that $\lambda(px^{\lambda} m) + (1 \lambda)(p'x^{\lambda} m') \le 0.$
 - So it must be that either px^λ ≤ m or p'x^λ ≤ m' (possibly both).
 - ► Therefore either $v(\lambda p + (1 \lambda)p', \lambda m + (1 \lambda)m' \le v(p, m))$ or $v(\lambda p + (1 - \lambda)p', \lambda m + (1 - \lambda)m' \le v(p', m')$ (Explain why)
- Thats it. (Explain why)

Continuity, Berge's theorem, a.k.a. Theorem of the Maximum

- Parametric constrained maximization problem: Maximize F(x, a) subject to x ∈ A(a).
 - Let A(a) be a continuous mapping from parameter vectors $a \in \Re^n$ to closed bounded subsets of \Re^n and the function F be a continuous function.
 - Define the correspondence $x(a) = \{x \in A(a) | F(x, a) \ge F(x', a) \text{ for all } x' \in A(a) \}$
 - Define the function $v(a) = \max_{x \in A(a)} F(x, a)$.
- Then the function v(a) is continuous and the correspondence x(a) is upper semi-continuous.

The special case of Berge's theorem for demand correspondences

- ► Maximize u(x) subject to px ≤ m where u is a continuous, monotone increasing utility function, where p >> 0 and m > 0.
- ► This corresponds to Berge's theorem with the parameter vector being p, m, the function F(x, a) = u(x) and the correspondence A(p, m) = {x ∈ ℜⁿ₊ | px ≤ m} being the budget correspondence.
- ► The correspondence A(p, m) turns out to be continuous at all (p, m) >> 0, so by Berge's theorem, the demand correspondence x(p, m) is upper semi-continuous and the indirect utility v(p, m) is continuous.

Continuous correspondences

- ► (We will here concern ourselves with correspondences into sets that are non-empty, closed and bounded in ℜⁿ.)
- A correspondence A(a) is upper semi-continuous if it has a closed graph. That is, if the sequence (a_n, x_n) → (a, x) and if x_n ∈ A(a_n) for all n then x ∈ A(a). (See picture on the board.)
- ▶ A correspondence is lower semi-continuous if for all $x \in A(a)$ and for any sequence $a_n \rightarrow a$, we can find N large enough so that for all n > N, there is an $x_n \in A(a_n)$ and $x_n \rightarrow x$.
- A correspondence is lower semi-continuous if it is both upper and lower semi-continuous.

(日) (同) (三) (三) (三) (○) (○)

The budget correspondence is continuous on the set \Re_{++}^{n+1} .

- Its upper semi-continuous.
- ▶ To see this, note that if $(p_n, m_n) \rightarrow (p, x)$ and $(p^n x_n \le m^n)$ for all *n*, then $px \le m$.

- Its lower semi-continuous
- A bit of algebra shows this.