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From Demand Theory to Equilibrium Theory

We have studied Marshallian demand functions for rational consumers, where
Di(p,mi) is the vector of commodities demanded by consumer i when the
price vector is p.

In general, the incomes of individuals depend on the prices of goods and
services that they have to sell. Therefore in the study of general equilibrium
theory, we need to make incomes depend on the prices of commodities. This
is nicely illustrated in the example of a pure exchange economy where there is
no production, but agents have initial endowments of goods which can they
bring to market and trade with each other. Each consumer initially has some
vector of endowments of goods. These goods are traded at competitive prices
and in equilibrium the total demand for each good is equal to the supply of
that good.

A Pure Exchange Economy

There are m consumers and n goods. Consumer i has a utility function ui(xi)
where xi is the bundle of goods consumed by consumer i. In a competitive
market, Consumer i has an initial endowment of goods which is given by the
vector ωi ≥ 0. Where p is the vector of prices for the n goods, consumer i’s
budget constraint is pxi ≤ pωi which simply says that the value at prices p
of what he consumes cannot exceed the value of his endowment.

Consumer i chooses the consumption vector Di(p) that solves this max-
imization problem. Where xi(p,mi) is i’s Marshallian demand curve, we

1



have
Di(p) = xi(p, pωi).

Let us denote i’s demand for good j by Di
j(p), which is the jth component

of the vector Di(p).
A pure exchange equilibrium occurs at a price p̄ such that total demand

for each good equals total supply. This means that

m∑
i=1

Di
j(p̄) =

m∑
i=1

ωij

for all j = 1, . . . n.
This vector equation can be thought of as n simultaneous equations, one

for each good. Finding a competitive equilibrium price amounts to solving
these n equations in n unknowns.

There are two important facts that simplify this task if the number of
commodities is small.

Homogeneity and a numeraire

The first is that the functions Di(p) are all homogeneous of degree zero in
prices and hence, so is

∑
iD

i(p). To see this, note that if you multiply all
prices by the same amount, you do not change the budget constraint (since if
pxi = pωi, then it must also be that kpxi = kpωi for al k > 0. Therefore we
can set one of our prices equal to 1 and solve for the remaining prices. Since
any multiple of this price vector would also be a competitive equilibrium, we
lose no generality in setting this price to 1.

Walras Law and one Equality for Free

The second fact is a little more subtle. It turns out that if demand equals
supply for all n − 1 goods other than the numeraire, then demand equals
supply for the numeraire good as well. This means that to find equilibrium
where there are n goods, we really only need to solve n−1 equations in n−1
unknowns. Thus if n = 2, we only need to solve a single equation. If n = 3,
we still only need to solve 2 equations in 2 unknowns.

To see why this happens, we prove an equality that is known as Walras’
Law.
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If all consumers are locally nonsatiated, we know that pDi(p) = pωi and
so

p
∑
i

Di(p) = p
∑
i

ωi

or equivalently,
m∑
i=1

n∑
j=1

pj(D
i
j(p)− ωij) = 0. (1)

This equality is preserved if we reverse the order of summation, in which case
we have

n∑
j=1

pj
m∑
i=1

(Di
j(p)− ωij) = 0. (2)

Let us define aggregate excess demand for good j as

Ej(p) =
m∑
i=1

(
Di
j(p)− ωij

)
. (3)

Then Equation 2 can be written as

n∑
j=1

pjEj(p) = 0. (4)

This is the equation commonly known as Walras’ Law. Equation 4 implies
that ∑

j 6=k
pjEj(p) = −pkEk(p). (5)

Let good k be the numeraire. Suppose that at price vector p̄, demand equals
supply for all commodities j 6= k. Then Ej(p̄) = 0 for all j 6= k. Therefore∑

j 6=k
p̄jEj(p̄) = 0. (6)

It follows from Equation 5 that

pkEk(p̄) = 0.

But pk = 1. Therefore Ek(p̄) = 0.
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Example 1

There are m consumers and two goods. Consumer i has utility function

Ui(x1, x2) = xα
i

1 x
1−αi

2

and endowment (ωi1, ω
i
2). Let good 1 be the numeraire with price 1 and let p

be the price of good 2. Then the demand function of Consumer i for good 2
is

Di
2(1, p) =

(1− αi)
p

(
ωi1 + pωi2

)
=

1

p
(1− αi)ωi1 + (1− αi)ωi2 (7)

Aggregate excess demand for Good 2 is given by

E2(p) =
n∑
i=1

(
Di

2(1, p)− ωi2
)

(8)

At a competitive equilibrium price p̄ for good 2, it must be that E2(p̄) = 0.
From equations 7 and 8 it follows that at a competitive equilibrium price p̄,
we have

1

p̄

m∑
i=1

(1− αi)ωi1 +
m∑
i=1

(1− αi)ωi2 =
m∑
i=1

ωi2 (9)

By rearranging the terms of Equation 9, we can solve for the equilibrium
price p̄ which is

p̄ =

∑m
i=1(1− αi)ωi1∑m

i=1 α
iωi2

(10)

Using Walras Law, we know that when excess demand is zero for good
1, it is also zero for good 2. Therefore where p̄ is given by Equation 10, at
price vector (p̄, 1) we have demand equal to supply both for good 1 and for
good 2.

In the special case where preferences are identical, so that αi = α for all
i we see that the solution in Equation 10 simplifies to

p̄ =
(1− α)

α

∑
i ω

i
1∑

i ω
i
2

. (11)

In this case, the price of good 2 is inversely proportional to the ratio of
the supply of good 2 to the supply of good 1 and is directly proportional to
the ratio of the Cobb-Douglas exponent on good 2 relative to that on good 1.
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Notice that this would also be the solution if there were only one consumer
who had an initial endowment of

∑
i ω

i
1 of good 1 and

∑
i ω

i
2 of good 2. In

this case, at the price vector (1, p̄) this rich consumer would demand exactly
the entire amount of each good that is available.

Problems

Problem 1

There are m consumers, all of whom have identical homothetic utility func-
tions. Note that aggregate demand is the same as it would be if one consumer
had all the utility. So how can you find equilibrium prices? At what prices
would this consumer demand exactly the quantities that are available in the
endowment?

Special case. Suppose

ui(x1, . . . , xn) =
1

α

 n∑
j=1

ajx
α
j


where α ≤ 1. Suppose that initial endowment of consumer i is given by
the vector ωi = (ωi1, . . . , ω

i
n). Find an explicit solution for a competitive

equilibrium price vector. Now find the quantities of each good purchased by
each consumer. (Hint: Remember that their utility functions are identical
and homothetic.)

Problem 2

There are three commodities in a pure exchange economy. Let good 3 be the
numeraire. There are m consumers. The total endowments of goods 1, 2,
and 3, are given respectively by ω1, ω2, and ω3.

The aggregate demand functions for goods 1 and 2 (when ω3 is large
enough) are given as follows:

D1(p1, p2, 1) = a1 − b1p1 + cp2

D2(p1, p2, 1) = a2 + cp1 − b2p2 (12)

where a1 > ω1, a2 > ω2 and b1b2 > c2.
A) Compute competitive equilibrium prices. What do we mean by ω3 is

“large enough”?
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B) Can you find individual utility functions for consumers such that ag-
gregate demand takes this form?

Hint: What if

ui(x
i
1, x

i
2, x

i
3) = x3 + ai1x

i
1 + ai2x

i
2 −

bi1
2

(xi1)2 − bi2
2

(xi2)2 + cxi2x
i
2 (13)

Partial and General Equilibrium Comparative Statics

Suppose that there are n commodities in an exchange economy. For conve-
nience, let commodity n be the numeraire. Let p̄ = (p̄1, . . . , p̄n) be a com-
petitive equilibrium price vector. Suppose that the demand for Good 1 is
given by the function D1(p̄1, . . . p̄n, α), where α is a parameter that “shifts”
the demand curve. If the aggregate endowment of good 1 is ω1, then in
competitive equilibrium it must be that

D1(p̄1, . . . p̄n, α) = ω1 (14)

We are interested in predicting the effects of a shift in the demand curve
or of a change in the aggregate supply. Let us first consider the “partial
equilibrium” approach. If we knew the demand function, what would be
our prediction about the change in the equilibrium price of good 1 that
would result from a change in the supply of good 1? The partial equilibrium
approach is to assume that prices of all goods other than good 1 are held
constant, and to see what change in p1 is needed to reestablish equilibrium if
we change the supply, ω1. To find this, we differentiate both sides of equation
14 with respect to ω1. When we do so, we find that

∂D1(p̄1, . . . p̄n, α)

∂p1

dp1

dω1

= 1 (15)

From Equation 15 we find our prediction of the effect of a change in endow-
ment on the price of good 1.

dp1

dω1

=
1

∂D1(p̄1,...p̄n,α)
∂p1

(16)

This should be no surprise to anyone who has studied elementary eco-
nomics. Suppose that you draw an “inverse demand curve for good 1” curve
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with quantity of good 1 on the horizontal axis, and price of good 1 on the ver-
tical axis, where the quantity corresponding to price p1 is D1(p1, p̄2 . . . p̄n, α).
The slope of this curve is

1
∂D1(p̄1,...p̄n,α)

∂p1

.

A vertical supply line drawn at ω1 will intersect this curve at D1(p̄1, . . . p̄n, α).
If you move the supply curve by ∆, the change in the price will be

∆
∂D1(p̄1,...p̄n,α)

∂p1

.

Now let us consider the general equilibrium solution for the effect of a
change in the supply of good 1. In general, a change in the price of good 1
will change demand in some of the other markets. So we need to find changes
in all n prices such that demand in market 1 is changed by the amount of
supply change and such that demand in all the other markets (where supply
has not changed) is the same as it was before the price change.

Let us define p(ω) to be the equilibrium price vector if the vector of
aggregate supplies is ω. We recall that in equilibrium it must be true that
for all commodities i = 1, . . . , n−1, Di (p(ω)) = ωi. Let us differentiate both
sides of each of these n− 1 equations with respect to ω1. We will find that

n−1∑
j=1

∂D1(p1 (ω), . . . , pn−1(ω), 1)

∂pj

(
∂pj(ω)

∂ω1

)
= 1 (17)

and for i = 2, . . . , n− 1,

n−1∑
j=1

∂Di(p1 (ω), . . . , pn−1(ω), 1)

∂pj

(
∂pj(ω)

∂ω1

)
= 0 (18)

We can write Equations 17 and 18 as a matrix equation of the form

Mx = y

where M is the n− 1 by n− 1 matrix whose ijth entry is

∂Di(p1 (ω), . . . , pn−1(ω), 1)

∂pj
,
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x is the column vector whose elements are ( ∂p1
∂ω1

. . . ∂pn
∂ω1

), and y is the column
vector whose first element is 1 and with all other elements equal to 0.

We want to solve for x which is the vector of changes in each of the prices.
If M has an inverse, this is x = M−1y. But since y is a vector whose first
element is 1 and all other elements are zero, we see that the vector x is just
the first column of the matrix M−1.

Example

Consider a three good example like that we considered in Problem 2. The
demand functions for goods 1 and 2

D1(p1, p2, 1) = a1 − b1p1 + cp2

D2(p1, p2, 1) = a2 + cp1 − b2p2 (19)

If c > 0, the goods are substitutes. If c < 0, the goods are complements.
The matrix of partial derivatives is

M =

(
−b1 c
c −b2

)

and so

M−1 =
1

b1b2 − c2

(
−b2 −c
−c −b1

)
Therefore

∂p1(ω1, ω2)

∂ω1

=
−b2

b1b2 − c2

and

∂p2(ω1, ω2)

∂ω1

=
−c

b1b2 − c2
.

In the special case where c = 0, these imply that

∂p1(ω1, ω2)

∂ω1

=
−1

b1

and
∂p2(ω1, ω2)

∂ω1

= 0.
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These are the partial equilibrium answers, which will differ from the gen-
eral equilibrium answers if there are cross effects.

We see that whether the goods are substitutes or complements, the exis-
tence of cross-effects amplifies the effect of supply changes. If the goods are
substitutes, an increase in the supply of good 1 will drive the price of good
1 down, but a fall in the price of good 1 reduces demand for good 2 and this
will require a reduction in the price of good 2 to clear market 2. But this
price reduction in market 2 will reduce demand in market 1 and so the price
in market 2 will have to be reduced further to equilibrate supply and demand
in market 1. But this means that the price in c market 2 has to be reduced
further. And so it goes...But if b1b2 − c2 > 0, this process settles down.

If the goods are complements, an increase in the supply of good 1 drives
the price of good 1 down, but this increases the demand for its complement,
good 2. The increase in demand for good 2 means that the price of good 2
has to increase to maintain equilibrium. in market 2. This reduces demand
for good 1 and so a further price reduction is needed to achieve equilibrium
in market 1. And so it goes...

Problem 3

A pure exchange economy has N1 Type 1 consumers and N2 type 2 con-
sumers. There are two goods, X and Y . Consumers of Type 1 each have an
initial endowment of ωy units of good Y and none of good X. Type 2’s each
have an initial endowment of ωx units of good X and none of good Y . Each
consumer of type i has preferences over consumption bundles (x, y) that are
represented by the utility function

ui(x, y) = xαiy(1−αi).

Let Good X be the numeraire.

A) Solve for the quantity of each good demanded by consumers of each
type when the price of good Y is p. Let Good X be the numeraire.

B) Solve for a competive equilibrium price as a function of the prarmeters
N1, N2, α1, α2, ω1 and ω2.

C) Find an expression for the utility of each type of consumer in com-
petitive equilibrium as a function of these parameters. Comment on the
qualitative nature of the effect of these parameters on individual welfare.
Who gains and who loses from changes in the various parameters?
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Income effects and multiple equilibria

This example is inspired by a paper by Lloyd Shapley and Martin Shubik from
the Journal of Political Economy in 1977. A more thorough treatment ap-
pears in “Simple economies with multiple equilibria” by Ted Bergstrom, Ken-
Ichi Shimomura and Takehiko Yamato, found at http://escholarship.

org/uc/item/6qv909xs#page-2

A Shapley-Shubik economy is a pure exchange economy with two con-
sumers and two goods X and Y . Both consumers have quasi-linear prefer-
ences, but their preferences are linear in different goods. Each consumer’s
initial endowment includes positive amounts only of the good in which he
has linear utility. Thus the utility functions of consumers 1 and 2 are:

U1(x1, y1) = x1 + f1(y1)

U2(x2, y2) = y2 + f2(x2) (20)

where f1(·) and f2(·) are increasing, concave functions. The initial endow-
ment of consumer 1 is (x0, 0) and the initial endowment of consumer 2 is
(0, y0).

You may ask, but if there are just two consumers and each one is a
monopolist of one of the goods, why should one think they would trade
at competitive prices? Probably they would not. But suppose that the
economy consisted of 1000 people just like consumer 1 and 1000 people just
like consumer 2. The competitive equilibrium prices and the equilibrium
consumptions that we would find for each of our two consumers would be the
same for each of the 2000 consumers in the big economy. In this economy each
consumer has 999 ”competitors” offering the same products in the market.

Let us consider a special case of a Shapley-Shubik economy where the
functions f1 and f2 are quadratic and are “mirror-images” of each other. In
particular, suppose that for some a > 0,

U1(x, y) = x+ ay − 1

2
y2

for all y ≤ a .

U2(x, y) = y + ax− 1

2
x2

for all x ≤ a.
We can make good X the numeraire by setting its price to one and solving

for the excess demand functions as a function of the price p of good Y . If
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consumer 1 demands positive amounts of both goods at price p, it must be
that consumer 1’s marginal rate of substitution between good Y and good X
is equal to p. This gives us the equation a− y1 = p, where y1 is the amount
of Y consumed by consumer 1. It follows that consumer 1’s demand for good
Y at price p is

D1
Y (p) = a− p (21)

If consumer 2 demands positive amounts of both goods, then it must be that
consumer 2’s marginal rate of substitution between good Y and good X is
equal to p. This requires that

1

a− x2

= p

where x2 is the amount of good 2 demanded by person 2. Therefore consumer
2’s demand for X is given by

D2
X = a− 1

p
. (22)

To find consumer 2’s demand for Y , we make use of consumer 2’s budget
constraint. Recall that consumer 2’s initial holdings vector is (0, y0), so 2’s
budget constraint is

x2 + py2 = py0. (23)

From Equations 22 and 23 it follows that

D2
Y (p) = y0 − 1

p
D2
X(p) = y0 − a

p
+

1

p2
. (24)

If p is a competitive equilibrium price, excess demand for Y must be 0. Since
Consumer 2 is the only one who has a positive initial endowment of good 2,
the total supply of good 2 is y0. Therefore

0 = EY (p) = D1
Y (p) +D2

Y (p)− y0 (25)

Substituting from equations 21 and 24 into equation 25 we find that at a
competitive equilibrium,

EY (p) = a− p+ y0 − a

p
+

1

p2
− y0 = 0 (26)
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Equation 26 simplifies to

EY (p) = a− p− a

p
+

1

p2
= 0 (27)

We can get some qualitative information about EY by seeing what happens
when p is small and when p is large. Note that limp→0EY (p) =∞ and that
limp→∞EY (p) = −∞. Note also that EY (·) is a continuous function. Draw
a diagram and you will see that there must be at least one solution. The
symmetry of the problem suggests one possible solution. It is easily verified
that E(1) = 0. Are there other solutions? (One trick that you could use is
to note that if E ′(1) > 0, there must be more solutions besides p = 1. Look
at a graph to see why. For what values of a is E ′(1) > 0? )1

For this function, there is a good direct way to find out whether there are
other solutions and what they are. If we multiply both sides of equation 27
by p2, we see that Equation 27 is satisfied only if

p3 − ap2 + ap− 1 = 0. (28)

We see that this is a cubic equation, and as such will have at most three
solutions. We already know that one of the solutions is p = 1, so we know
that equation 28 can be factored to be expressed as p− 1 times a quadratic.
A bit of fiddling (long division) shows that

p3 − ap2 + ap− 1 = −(p− 1)
(
p2 + (1− a)p+ 1

)
(29)

Therefore the other two roots of the equation

p3 − ap2 + ap− 1 = 0

are found by applying the quadratic formula to the quadratic equation(
p2 + (1− a)p+ 1

)
= 0.

We see that this expression will have two roots p̄ and 1
p̄

if and only if a > 3.
These are the solutions.

1Another trick that you could employ is to note that for p 6= 1, it must be that with
this excess demand function, if E(p) = 0, then E(1/p) = 0 and so any solutions other than
p = 1 come in reciprocal pairs.
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Working backwards is even easier. We can choose the parameter a to
give us three equilibria with equilibrium prices p̄, 1, and 1/p̄, where p̄ is
any positive number we want. Suppose, for example, we want to have three
solutions, 1/2, 1, and 2. We need to have(

p2 + (1− a)p+ 1
)

= 0

which is equivalent to a = 1 + p+ 1/p. If p = 1/2, this is the case when

a = 1 +
1

2
+ 2 = 3

1

2
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