Calculus conditions for concave functions (of A single variable).

- Recall that a real-valued function f is concave if and only if its domain is a convex set $A \subset \Re_{n}$ and for all x_{1} and x_{2} in A and for all $\lambda \in[0,1]$,

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

- If $A \subset \Re$, this implies that for all x_{1} and x_{2} in A and for all $\lambda \in[0,1]$,

$$
f\left(x_{2}\right) \leq f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f^{\prime}\left(x_{1}\right)
$$

- Draw some pictures.-See slide for "rooftop theorem"

From rooftops to second derivatives.

- The rooftop theorem tells us that if f is concave, $f\left(x_{2}\right) \leq f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f^{\prime}\left(x_{1}\right)$ for all x_{1} and x_{2} in A.
- Rearranging terms, we have

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right) \leq\left(x_{2}-x_{1}\right) f^{\prime}\left(x_{1}\right) \tag{1}
\end{equation*}
$$

- The rooftop theorem also tells us that if f is concave, $f\left(x_{1}\right) \leq f\left(x_{2}\right)+\left(x_{1}-x_{2}\right) f^{\prime}\left(x_{2}\right)$ for all x_{1} and x_{2} in A.
- Rearranging terms, we have $f\left(x_{1}\right)-f\left(x_{2}\right) \leq\left(x_{1}-x_{2}\right) f^{\prime}\left(x_{2}\right)$.
- Multiply both sides by -1 , above implies

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right) \geq\left(x_{2}-x_{1}\right) f^{\prime}\left(x_{2}\right) \tag{2}
\end{equation*}
$$

- Let $x_{2}>x_{1}$. Then Inequalities 1 and 2 imply that $f^{\prime}\left(x_{2}\right) \leq f^{\prime}\left(x_{1}\right)$.

Calculus conditions for concave functions (of A single variable).

- Recall that a real-valued function f is concave if and only if its domain is a convex set $A \subset \Re_{n}$ and for all x_{1} and x_{2} in A and for all $\lambda \in[0,1]$,

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

- If $A \subset \Re$, this implies that for all x_{1} and x_{2} in A and for all $\lambda \in[0,1]$,

$$
f\left(x_{2}\right) \leq f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f^{\prime}\left(x_{1}\right)
$$

- Draw some pictures.-See slide for "rooftop theorem"

From rooftops to second derivatives.

- The rooftop theorem tells us that if f is concave, $f\left(x_{2}\right) \leq f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f^{\prime}\left(x_{1}\right)$ for all x_{1} and x_{2} in A.
- Rearranging terms, we have

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right) \leq\left(x_{2}-x_{1}\right) f^{\prime}\left(x_{1}\right) \tag{3}
\end{equation*}
$$

- The rooftop theorem also tells us that if f is concave, $f\left(x_{1}\right) \leq f\left(x_{2}\right)+\left(x_{1}-x_{2}\right) f^{\prime}\left(x_{2}\right)$ for all x_{1} and x_{2} in A.
- Rearranging terms, we have $f\left(x_{1}\right)-f\left(x_{2}\right) \leq\left(x_{1}-x_{2}\right) f^{\prime}\left(x_{2}\right)$.
- Multiply both sides by -1 , above implies

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right) \geq\left(x_{2}-x_{1}\right) f^{\prime}\left(x_{2}\right) \tag{4}
\end{equation*}
$$

- Let $x_{2}>x_{1}$. Then Inequalities 1 and 2 imply that $f^{\prime}\left(x_{2}\right) \leq f^{\prime}\left(x_{1}\right)$.

MAxima FOR DIFFERENTIABLE CONCAVE FUNCTIONS

- From elementary calculus we know that $f: \Re \rightarrow \Re$ and if $f^{\prime}(x)$ exists and x is in the interior of its domain, then a necessary condition for x to be a local maximum of f on A is that $f^{\prime}(x)=0$.
- We also know that a necessary and sufficient condition for x to be an interior local max is that $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)<0$ and $f^{\prime \prime}(x)<0$.
- Show that if f is a concave function and has a local max at x, then it has a global max at x.
- So we know that if f is a concave function such that $f^{\prime \prime}(x)$ exists everywhere, the $f^{\prime}(x)=0$ is necessary and sufficient for x to be a global maximum on A.
- Is $f^{\prime}(x)=0$ and $f^{\prime \prime}(x) \leq 0$ sufficient for x to be a maximum?

Going to Higher Dimensions

- Where $f: \Re_{+}^{n} \rightarrow \Re$, and for all x and $y \in \Re_{+}^{n}$, let us define the function

$$
g(t)=f(x+t(y-x))
$$

for all $t \in[0,1]$.

- If f is a concave function on \Re_{+}^{n}, then g is a concave function on the real interval $[0,1]$.
- So if f is concave and twice differentiable, then $g^{\prime \prime}(0) \leq 0$.
- Let's find out more about $g^{\prime \prime}(0)$.

Quadratic Forms Emerge

- Applying the chain rule,

$$
g^{\prime}(t)=\sum_{i=1}^{n}\left(y_{i}-x_{i}\right) f_{i}(x+t(y-x))
$$

- Then

$$
g^{\prime \prime}(t)=\sum_{i=1}^{n}\left(y_{i}-x_{i}\right) \frac{d}{d t} f_{i}(x+t(y-x))
$$

- So

$$
g^{\prime \prime}(0)=\sum_{i=1}^{n}\left(y_{i}-x_{i}\right) \sum_{j=1}^{n}\left(y_{j}-x_{j}\right) f_{i j}(x+t(y-x))
$$

What did we learn?

- If f is a concave function, then it must be that the quadratic form

$$
g^{\prime \prime}(0)=\sum_{i=1}^{n}\left(y_{i}-x_{i}\right) \sum_{j=1}^{n}\left(y_{j}-x_{j}\right) f_{i j}(x+t(y-x)) \leq 0
$$

for all x and y in \Re_{+}^{n}.

- But this will be true if and only if the quadratic form $x^{\prime} M x$ is negative semidefinite, where M is the matrix of second order partial derivatives of f. That is $M_{i j}=f_{i j}$.

An example

- Let

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right)-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+c x_{1} x_{2} .
$$

- Then $f_{11}\left(x_{1}, x_{2}\right)=f_{22}\left(x_{1}, x_{2}\right)=-1$ and $f_{12}\left(x_{1}, x_{2}\right)=f_{21}\left(x_{1}, x_{2}\right)=c$ for all x_{1}, x_{2}.
- The matrix

$$
\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)=\left(\begin{array}{cc}
-1 & c \\
c & -1
\end{array}\right)
$$

is negative semidefinite if and only if $|c| \leq 1$.

