
Calculus conditions for concave functions
(of a single variable).

• Recall that a real-valued function f is concave if and only if its domain
is a convex set A ⊂ <n and for all x1 and x2 in A and for all λ ∈ [0, 1],

f (λx1 + (1− λ)x2) ≥ λf (x1) + (1− λ)f (x2)

• If A ⊂ <, this implies that for all x1 and x2 in A and for all λ ∈ [0, 1],

f (x2) ≤ f (x1) + (x2 − x1)f ′(x1).

• Draw some pictures.–See slide for “rooftop theorem”



From rooftops to second derivatives.

• The rooftop theorem tells us that if f is concave,
f (x2) ≤ f (x1) + (x2 − x1)f ′(x1) for all x1 and x2 in A.

• Rearranging terms, we have

f (x2)− f (x1) ≤ (x2 − x1)f ′(x1). (1)

• The rooftop theorem also tells us that if f is concave,
f (x1) ≤ f (x2) + (x1 − x2)f ′(x2) for all x1 and x2 in A.

• Rearranging terms, we have f (x1)− f (x2) ≤ (x1 − x2)f ′(x2).

• Multiply both sides by -1, above implies

f (x2)− f (x1) ≥ (x2 − x1)f ′(x2) (2)

• Let x2 > x1. Then Inequalities 1 and 2 imply that f ′(x2) ≤ f ′(x1).
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Maxima for differentiable concave functions

• From elementary calculus we know that f : < → < and if f ′(x) exists
and x is in the interior of its domain, then a necessary condition for x
to be a local maximum of f on A is that f ′(x) = 0.

• We also know that a necessary and sufficient condition for x to be an
interior local max is that f ′(x) = 0 and f ′′(x) < 0 and f ′′(x) < 0 .

• Show that if f is a concave function and has a local max at x , then it
has a global max at x .

• So we know that if f is a concave function such that f ′′(x) exists
everywhere, the f ′(x) = 0 is necessary and sufficient for x to be a
global maximum on A.

• Is f ′(x) = 0 and f ′′(x) ≤ 0 sufficient for x to be a maximum?



Going to Higher Dimensions

• Where f : <n
+ → <, and for all x and y ∈ <n

+, let us define the
function

g(t) = f (x + t(y − x))

for all t ∈ [0, 1].

• If f is a concave function on <n
+, then g is a concave function on the

real interval [0, 1].

• So if f is concave and twice differentiable, then g ′′(0) ≤ 0.

• Let’s find out more about g ′′(0).



Quadratic Forms Emerge

• Applying the chain rule,

g ′(t) =
n∑

i=1

(yi − xi )fi (x + t(y − x)) .

• Then

g ′′(t) =
n∑

i=1

(yi − xi )
d

dt
fi (x + t(y − x)) .

• So

g ′′(0) =
n∑

i=1

(yi − xi )
n∑

j=1

(yj − xj)fij (x + t(y − x)) .



What did we learn?

• If f is a concave function, then it must be that the quadratic form

g ′′(0) =
n∑

i=1

(yi − xi )
n∑

j=1

(yj − xj)fij (x + t(y − x)) ≤ 0

for all x and y in <n
+.

• But this will be true if and only if the quadratic form x ′Mx is negative
semidefinite, where M is the matrix of second order partial derivatives
of f . That is Mij = fij .



An example

• Let

f (x1, x2) = (x1 + x2)− 1

2

(
x21 + x22

)
+ cx1x2.

• Then f11(x1, x2) = f22(x1, x2) = −1 and f12(x1, x2) = f21(x1, x2) = c
for all x1, x2.

• The matrix (
f11 f12
f21 f22

)
=

(
−1 c
c −1

)
is negative semidefinite if and only if |c | ≤ 1.


