CHAPTER 16

Quadratic Forms
and Definite
Matrices

The natural starting point for the study of optimization problems is the simplest
such problem: the optimization of a quadratic form. There are a number of good
reasons for studying quadratic optimization problems first. Quadratic forms are
the simplest functions after linear ones. Like linear functions, they have matrix
representations, so that studying the properties of a quadratic form reduces to
studying properties of a symmetric matrix. Quadratic forms provide an excellent
introduction to the vocabulary and techniques of optimization problems. Fur-
thermore, the second order conditions that distinguish maxima from minima in
economic optimization problems are stated in terms of quadratic forms. Finally, a
number of economic optimization problems have a quadratic objective function,
for example, risk minimization problems in finance, where riskiness is measured
by the (quadratic) variance of the returns from investments.

Example 16.1  Among the functions of one variable, the simplest functions with
- @ unique global extremum are the pure quadratics: y = x> and y = —x2, The
' former has a global minimum at x = 0: the latter has a global maximum at
“x = 0, as illustrated in Figure 16.1.

16.1 QUADRATIC FORMS
Recall the definition of a quadratic form on R™ from Section 13.3.

Definition A quadratic form on R™ is a real-valued function of the form

Q(Xl, Cey X,,) = Z ajjxXix;, (I)

(=]

in which each term is a monomial of degree two.
The presentation in Section 13.3 showed that each quadratic form Q can be
represented by a symmetric matrix A so that
Ox)=x"-4-x (2)
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Figure
16.1 The functions of f(x) = x> and f(x) = —x°.

For example, the general two-dimensional quadratic form

s )
ay Xy + dapxix U X5 (3)

can be written as

And the general three dimensional quadratic form

3 >, 2
dy Xy T odanxs +odssxy + X Xyt dpaX Xy T dazxnXy (4)

can be written as:

| |
ay 52 5d13 )
2 ] X
(xi o x3)|lan an  Fax %)
j X3
5013 zdoy dsg

16.2 DEFINITENESS OF QUADRATIC FORMS

A quadratic form always takes on the value zero at the point x = 0. Its distin-
guishing characteristic is the set of values it takes when x # 0. In this chapter, we
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tocus on the question of whether x = 0 is a max. a min or neither of the quadratic
forms under consideration.

The general quadratic form of one variable is v = ax. Ifa > 0, then ax” is
always = 0 and equals O only when x = 0. Such a form is called positive definite;
x = Oisits global minimizer. If a < 0, then ax? is always = 0 and cquals 0 only
when x = 0. Such a quadratic form is called negative definite: x = () is its global
maximizer. Figure 16.1 illustrates these two situations,

In two dimensions, the quadratic form Q(x;, x») = \f + \5 is always greater
than zcero at (xy, x2) # (0, 0). So. we call (), positive definite. Quadratic forms
like Qa(xp, x0) = —xf — vs. which are strictly negative except at the origin, are
called negative definite. Quadratic forms like Qs(xy, vr)= x; - \3 which take on
both positive and negative values (Q3(L0) = +1Tand Q+(0, 1) = 1) are called
indefinite.

There are two intermediate cases: a quadratic form which is always = 0 but
may cqual zero at some nonzero x’s is called positive semidefinite. This property
is illustrated by the quadratic form

\ ) ) o M
Qi(x, ) = (x4 + 1) = A7 F 2y o+ ox,

which is never negative but which cquals zero at nonzero points such as (x;, vy)=
(L =1or (=2 2). A quadratic form like Qs(xy, x0)=—(x; + x>)°, which is never
positive but can be zero at points other than the origin, is called negative semidef-
inite.

Figures 16.2 through 16.6 present the graphs of the above five quadratic forms
Q1. ..., Os. Every quadratic form on R? has a graph similar to one of these five.
For example. cvery positive definite quadratic on R? has a bowl shaped graph as
in Figure 16.2, and cvery indefinite quadratic on R? has a saddle-shaped graph as
in Figure 16.4.

- v o - . - N . b
Graph of the positive definite form Q(xy, x>) = xf + x5,

Figure
16.2
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16.3 Graph of the negative definite form Q-(xy, v) - vy \
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16.4 The graph of the indefinite form (v, x») Voo

A
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Figure

16.5 The graph of the positive semidefintie forne Qy(xy, v - (v ¢ )
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The graph of the negative semidefinite form Q<(xy, xs) = (x; + 1x)"

Definite Symmetric Matrices

A symmietric matrix s called positive definite, positive semidefinite. negative
definite, cte.. according to the definiteness of the corresponding quadratic form
Q) ~x'Ax. Since we will usually be applving this terminology to svmmetric
matrices directly, we tfocus on such matrices tor our formal definitions of definite-

HUSS,
Definition et A be an < o symmetric matrix, then A s

(a) positive definite if X’ Ax - O forall x # 0in R",

() positive semidefinite it x/Ax = 0 forall x # 0 in R",

(¢) negative definite if x’Ax - Oforallx # 0in R",

() negative semidefinite if x’Ax == Oforall x # 0in R", and

(¢) indefinite if X’ Ax - 0 for some x in R" and - 0 for some other x in R,

Remark A matrix that is positive (negative) definite is automatically positive
(negative) semidedinite. Otherwise, every svimmeetric matrix falls into one of the
above five categories.

Application: Second Order Conditions and Convexity

The definiteness of a symmetric matrix plavs an important role in cconomic
theory and in applicd mathematies in general. For example, for a function v

f(x) of one variable. the sign of the second derivative f7(v) at a critical point
Ky of fogives a necessary condition and a sufficient condition for determining
whether vy is a maximum of /. a minimum of /. or neither. The generalization
of this second derivative test to higher dimensions involves checking whether the

Figure
16.6
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second derivative matrix (or Hessian) of f is positive definite. neg
or indefinite at a critical point of f.

In a similar vein, a function y = f(x) of one variable is concavi
derivative f”(x) is = 0 on some interval. The generalization of this r
dimensions states that a function is concave on some region if its sec
matrix is negative semidefinite for all x in the region.

Application: Conic Sections
In plane geometry, the conic section described by the level curve
O(xy, X2) = ayyxi + apax +ansg = |

is completely determined by the definiteness of Q or ot its associate

L 1 1

), [ an 54
& E - F — ‘ .
B 512 A

Figure 16.7 illustrates the connection. The horizontal plane {x; = 1}
in Figure 16.2 in an ellipse or circle. Therefore, if A is positive defir
is an ellipse or circle. Since {x; = 1} cuts the graph in Figure 16.4 in
as also illustrated in Figure 16.7, equation (5) describes an hyp

{xy = 1}

\

e/
e

Figure
16.7 Levels sets of graphs of quadratic forms.
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indefinite. Since {x; = 1} cuts the graph of Figure 16.5 in a pair of parallel lines,
equation (5) defines two lines if A is positive semidefinite but not positive definite.
Finally, since the plane {x; = 1} lies strictly above the graphs in Figures 16.3 and
16.6, the set (5) is empty if A is negative definite or even negative semidefinite.

Principal Minors of a Matrix

In this section we will describe a simple test for the definiteness of a quadratic
form or of a symmetric matrix. To describe this algorithm, we need some more
vocabulary.

Definition Let A be an n X 7 matrix. A k X k submatrix of A formed by
deleting n — k columns, say columns iy, i, ..., i, and the same n — k TOWS,
TOWS Iy, Iy, ..., I,—4, from A is called a kth order principal submatrix of A. The
determinant of a k X k principal submatrix is called a kth order principal minor
of A.

Example 16.2  For a general 3 X 3 matrix

ayp apx dps
A=1|ay an an|,
dzy  dz  dass

there is one third order principal minor: det(A). There are three second order
principal minors:

(1) 2“ glz , formed by deleting column 3 and row 3 from A:
21 A

(2) z” 213 , formed by deleting column 2 and row 2 from A;
31 d33

(3) ‘?22 ?23 , formed by deleting column 1 and row 1 from A.
azz Az

There are three first order principal minors:

(1) [ay; |, formed by deleting the last 2 rows and columns,

(2) |ay |, formed by deleting the first and third rows and the first and third
columns, and

(3) |ass |, formed by deleting the first 2 rows and columns.

[t is important to understand why no other submatrix of A is a principal
submatrix. For practice, list all the principal minors of a general 4 X 4 matrix.

Among the kth order principal minors of a given matrix, there is one special
one that we want to highlight.
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Definition Let A be an n X n matrix. The kth order principal submatrix of A
obtained by deleting the last n — k rows and the last n — k columns from A 1S
called the kth order leading principal submatrix of A. Its determinant is called
the kth order leading principal minor of A. We will denote the kth order leading
principal submatrix by Ay and the corresponding leading principal minor by [A.].

An n X n matrix has n leading principal submatrices — the top-leftmost 1 X 1
submatrix, the top-leftmost 2 X 2 submatrix, ctc. For the general 3 X 3 matrix of
Example 16.2, the three leading principal minors are

dyp dyy dys
a»y dpy dxs

ayy dys l
¥

a
lan |, ary an

dzp a3z A

The following theorem provides a straightforward algorithm which uses the
leading principal minors to determine the definiteness of a given matrix. We
present its proof in the Appendix of this chapter. We will present other criteria for
the definiteness of a symmetric matrix in Section 23.7.

Theorem 16.1 Let A be an n X n symmetric matrix. Then,

(a) A is positive definite if and only if all its n leading principal minors are
(strictly) positive.

(b) A is negative definite if and only if its n leading principal minors
alternate in sign as follows:

Al <0, Al >0, A3l <0, et

The kth order leading principal minor should have the same sign as
(=D

(¢) If some kth order leading principal minor of A (or some pair of them)
is nonzero but does not fit either of the above two sign patterns, then A
is indefinite. This case occurs when A has a negative kth order leading
principal minor for an even integer k or when A has a negative kth order
leading principal minor and a positive € th order leading principal minor
for two distinct odd integers k and €.

One way that the leading principal minor test of Theorem 16.1 can fail for a
given symmetric matrix A is that some leading principal minor of A is zero while
the nonzero ones fit the sign pattern in either a) or b) of Theorem 16.1. When this
oceurs, the matrix A is not definite and it may or it may not be semidefinite. In this
case, to check for semidefiniteness, one no longer has the luxury of checking only
the n leading principal minors of A, but must check the sign of every principal
minor of A, using the test described by the following theorem.
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Theorem 16.2 Let A be an n X n symmetric matrix. Then, A is positive
semidefinite if and only if every principal minor of A is = 0; A is negative
semidefinite if and only if every principal minor of odd order is = 0 and every
principal minor of even order is = 0.

Example 16.3  Suppose A is a 4 X 4 symmetric matrix and, as usual, write |A,]
- for its ith order leading principal minor.

(a) AL > 0, 142] > 0, ]45] > 0, |A4] > 0, then A is positive definite
(and conversely).

(b) If1A}] < 0, ]45] > 0, 145] < 0, |A4] > 0, then A is negative definite
(and conversely). V

(¢) ItA{] > 0, |A5] > 0, ]A3] = 0, |A4] < 0, then A is indefinite because
OfA4.

(d) If]A|] < 0, |A5] <0, |A3] < 0, JA4] < 0, then A is indefinite because
of A; (and Ay).

(e) IflA,] = 0, |A,] < 0, |A3] = 0, |[A4] = 0, then A is indefinite because
()fAz,

() If1A] > 0,]4,] = 0, [A3] > 0,]44] > 0, then A is not definite. It is not
negative semidefinite, but it may be positive semidefinite. To check for
positive semidefiniteness, one must check all 15 principal minors of A,
not just the four leading principal ones. If none of the principal minors
are negative, then A is positive semidefinite. If at least one of them is
negative, A is indefinite.

(g) If1A{] = 0, |A5] > 0, 1A3] = 0, |A4] > 0, then A is not definite, but
it may be positive semidefinite or negative semidefinite. To decide, one
must again check all 15 of its principal minors.

To motivate these two theorems and to understand their algorithms better, we
will examine them in some detail for the simplest symmetric matrices — diagonal
matrices and then 2 X 2 matrices.

The Definiteness of Diagonal Matrices

The simplest n X n symmetric matrices are the diagonal matrices. They also
correspond to the simplest quadratic forms since

dy 0 c { Xy

0 dr 0 X3 i
(X’} ’Yz e “t‘.'? ) : : .. : : (6)

o o0 - a, X,

bl b Il
= apxy tagxs oo toax;

4
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asum of squares. Clearly. this quadratic form will be positive definite if and only it
all the a;s are positive and negative definite it and only if all the ¢;'s are negative.
[t will be positive semidefinite it and only it all the ¢;'s are = 0 and negative
semidefinite if and only if all the @;'s are = 0. If there are two a;'s of opposite
signs, this form will be indefinite.

Since all the principal submatrices are diagonal matrices, their determinants —
the principal minors — are just products of the a;’s. It all the @;'s are positive. then
all their products are positive and so all the leading principal minors are positive.
If all the a,"s are negative (so the form is negative definite). then products of odd
numbers of the «,'s will be negative and products of even numbers of the a;'s will
be positive. This corresponds to the alternating signs condition in b) ol Theorem
16.1 and indicates why we should expect such an alternating sign condition instead
of an all negative condition in the test for negative definiteness.

If a, is zero in (6), the form cannot be detinite since it will be zero when
evaluated at (1, 0, ..., 0). Notice that in this diagonal case. all the leading principal
minors of (6) will also be zero. independent of the signs of the other a;'s. In order
(0 check that all the a;'s have the proper sign when some of them are zero, one
must check much more than just the leading principal minors.

The Definiteness of 2 X 2 Matrices

One can verify Theorems 16,1 and 16.2 directly for 2 <2 svmmetric matrices by

completing the square in the corresponding quadratic form. Consider the genceral
- - hi

quadratic form on R

(7)

coaxy o 2hyxs boex

[N

For case of notation, we are using a. b, and ¢ in this example in place of ayy.
a2, and asy, respectively. e = 0, then @ cannot be positive or negative definite
because Q1 0) = 0. So, assume now that ¢ # 0 and complete the square in (7)
by adding and subtracting b x5 /a in expression (7):

.obt b

O(xy, vo) = axy + 2byyxs #oxs b A3
- a - T
5 , ,
. 2b b b= )
=gl By B xs S S G N
' a = a -

b\ (ac - b7y o
Z= "’& I \3 o e \g (8)
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If both coctficients, a and (a¢ — b=)/a in (8) arc positive. then O will never be
negative. It will equal zero only when

thatis, when vy = Oand v = 0. In other words. if

la ] -0 and detA = a b

f -

b ¢

then ( is positive definite. Conversely, in order for (J to be positive definite, we
need both a and det A = ac ~ b to be positive.

Similarly, Q will be negative definite if and only if both coctlicients in expres-
ston (8), @ and (ac — b*Y/a, are negative. This situation oceurs if and only ifa < 0
and ac — b7 = 0, that is. when the leading principal minors alternate in sign.

If (ac — b7), the second order principal minor. is negative, then the two coef-
ficients in (8) have opposite signs. In particular,

b ac — bh* , ;
Q ( I) = e and - O(L ) = g

a
will have opposite signs; so Q is indefinite.

Example 16,4 Consider

SSinee JA = 2 and (AL < S0 s positive definite. Since [By] = 2 and

-~

(Bl = -2 Risindefinite,

Lxample 16,5 Consider

S {00
€= ((} (’)'

Note that [C4] = 0and [(5] = 0. The definiteness of ¢ depends completely

on ¢ Cis positive semidefinite if ¢ = O and negative semidefinite if ¢ =2 (),

- This is especially obvious if one looks at the corresponding quadratic form
N b
00y, ) = Cxs.
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EXERCISES

16.1 Determine the definiteness of the following symmetric matrices:

D2 (2 ) et ) e G

120 -1 10 (1)(;33
o245 ol v =1 o) oy
05 6 0 0 -2 30 40

- 05 0 6

16.2 Let Q(x) = x’Ax be a quadratic form on R*. By evaluating ¢ on cach of the
coordinate axes in R®, prove that a necessary condition for a symmetric matrix to
be positive definite (positive semidefinite) is that all the diagonal entries be positive
(nonnegative). State and prove the corresponding result for negative and negative
semidefinite matrices. Give an example to show that this necessary condition is not
sufficient.

16.3 Using the method of the previous exercise, sketch a proof that if A is positive (or
negative) definite, then every principal submatrix of A is also positive (or negative)
definite.

16.4 How many kth order principal minors will an n X n matrix have for cach k = n?

16.5 Mimic the computation in (8) to prove Theorem 16.1 for a general symmetric 3 X 3
matrix. [Hint: After “completing the square” twice, you should find that

ay dyz 4 Xy
(,\’1 X2 )«:3) yy iy dos X2 =
dyy dxm diy X3

3

ap ain \ . A ( C o apdn T dapag )2 Al
A Xy + ey, ) + X b e D X e (1 Y
il (r; dyy " ayy ﬁ) A} & [A,] . [Azl(ﬁ} ]

16.3 LINEAR CONSTRAINTS AND BORDERED MATRICES
Definiteness and Optimality

Keep in mind the fact that determining the definiteness of a quadratic form Q
is equivalent to determining whether x = 0 is a max, a min, or neither for the
real-valued function Q. For example, x = 0 is the unique global minimum of
quadratic form Q if and only if Q is positive definite, by the very definition of
positive definiteness. Similarly, x = 0 is the unique global maximum ot Q if and
only if Q is negative definite.

The characterization of definiteness in Theorem 16.1 works only if there are
no constraints in the problem under consideration, that is, if x can take on any
value in R™. If there are constraints, the analysis becomes more delicate.
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Example 16.6  The quadratic form Q(xy, x») = ¥ = ¥ on R? is indefinite: the
origin is neither a max nor a min. But, if we restrict our attention to the x,-axis,
that is, if we impose the constraint x, = 0, then Qxy, 0) = x% has a strict
global minimum at x; = 0, and therefore Q is positive definite on the constraint
set {x; = O}. Alternatively, if we impose the constraint x; = 0 and consider
Q only on the xy-axis, then x; = 0 is a global max of Q(0, x;) = —x3 and
- Q is negative definite on the subspace {x; = 0}. On the line x; — 2x, = 0,
- Q(2x2, x2) = (2x2)7 — x3 = 3x3 is positive definite.

As will be shown in Chapter 19, the second order condition which distinguishes
maxima from minima in a constrained optimization problem is a condition on the
definiteness of a quadratic form which is restricted to a linear subspace. Since
most optimization problems in economics involve constraints on the variables
under study, the rest of this chapter will discuss the definiteness of quadratic forms
which are restricted to linear subspaces of R™.

Let us look in detail at the simplest such problem: the problem of determining
the definiteness of, or of optimizing, a general quadratic form of two variables:

Qlxy, x3) = axf + 2bx x> + CX‘;“ =(x;1 x3) (Z f) (fl ), (9
VAR

on the general linear subspace
""X! + BXg = (), (10)

In Example 16.6, we worked with A = (), then with B = 0, and finally withA = |
and 8 = -2,

Since our focus is on the matrix and not on the quadratic form itself, we have
multiplied the coefficient of x,.x, in (9) by 2 so that we do not have to deal with
1/2s in the corresponding matrix. The simplest approach to this problem is to
solve (10) for xy in terms of x,; obtain x; = —Bx, /A, and then substitute this
expression for x; in the objective function (9):

B Bx,\~ B :
o(n) o) a2

£

5132 3 ?j}B 5 (11)

2 2
-4~§-x2 - TXE -+ CX5

aB* — 2bAB + cA2 ;
= e

{LX 2

We conclude from (11) that Q is positive definite on the constraint set (10) if
and only if aB* —~ 2bAB + cA? > 0 and negative definite on (10) if and only if
aB* — 2bAB + cA? < (). There is a convenient way of writing this expression:

Ll
43
s

i

¥
$ 0
f
4
i
i
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| 0 A B
aB> — 2bAB + ¢cA” = —detl A « b |. (12)
B b ¢

The matrix in (12) is obtained by “bordering” the 2 > 2 matrix (9) of the quadratic
O on the top and left by the coefticients of the linear constraint (10). The following
theorem summarizes these calculations.

Theorem 16.3  The quadratic form Q(x, x2) = axj +2bx ¥ © X3 Is positive
respectively. negative ) definite on the constraint set Axy +Bx> = 0 itandonlv if
p y,neg ) 2 vy

0 A B
detl A a b
B b <

is negative (respectively, positive).

This same result holds for the general problem of determining the definite-

ness of
‘ayy dyy ot dyy Xy
« r dpp dox tt ol 2
OX) =X Ax = ()| . . . . (13)
iy d>y T Hyn Ay
on the linear constraint set
X ()
By By, - By ’
0> ()
SR - (14)
Bml Bml‘ T an 0
Y, ,

Border the matrix (13) of the quadratic form on the top and on the left by the
matrix ( 14) of the linear constraints:

) 0 I H” Bt;f
. R : | : E :
0 - 0 | B, - Bu
=1 -1 (15)
By o By loan o du
: i . 1 : : :

\B!n e Hmn ‘ tyy e pn
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We first need to figure out which submatrices of H to consider. In studying the
quadratic (9) on the constraint set (10). we had only one condition to check in
Theorem 16.3 because our single constraint in R? resulted in a one-dimensional
problem. The above problem (13, I4) has m lincar equations of n variables, We
theretore expect that this problem is really n — m dimensional and therefore that
we will have n—m conditions to check for the matrix # in (13). Furthermore, from
our experience in Section 16.2. we expect that we will look for leading principal
minors of the same sign to check for positive definiteness and for leading principal
minors of alternating signs to check for negative definiteness. The following
theorem indicates that these expectations are correct. and it makes precise the
exact sign patterns that we need to verify.,

Theorem 16.4  To determine the definiteness of a quadratic form (13) of n
variables, O(x) = x’Ax, when restricted to a constraint set (14) given by m
linear cquations Bx = 0, construct the (n + m) X (n + m) symmetric matrix
/1 by bordering the matrix A above and to the left by the coetficients B of the

tinear constraints:
0 B
n-(B, x)

Check the signs of the last i~ m leading principal minors of /1, starting with
- the determinant of H itself.

(a) I det /1 has the same sign as (= 1) and if these last 7~ m leading
principal minors alternate in sign, then Q is negative definite on the
constraint set Bx = 0, and x = 0 is a strict global max of Q on this
constraint set.

(h)y WdetH and these last = m leading principal minors all have the same
sign as (— 1Y, then Q is positive definite on the constraint set Bx = 0,
and x = 0 is a strict global min of Q on this constraint set.

(¢) It both of these conditions ) and b) are violated by nonzero leading
principal minors, then Q) is indefinite on the constraint set Bx = 0, and
x = O is neither a max nor a min of O on this constraint sct.

We will not present the rather intricate proof of this theorem here. Notice that
its conclusions are consistent with the conclusions of Theorem 163 forn = 2 and
m = 1. where for the case of two variables and one constraint. we only needed to

special cases of Theorem 164,

Lxample 16.7  To check the definiteness of

b ¥ hl 3
Oy, vy, vy, 1) = B ST 0 SR R SR o 3 S SR S o
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- on the constraint set

Xty tag =0 Xp o~ Yy oy =0,

~form the bordered matrix

0 0 | 1 9 |
H, = |0 P L0 0 ~1
I -9 | 0 1 2 0
1 0 | { 2 i 0
| [ I 0 0 |
Since this problem has n = 4 variables and m = 2 constraints. we need o

check the largest n — m = 2 leading principal submatrices of 1,0 Hy, itself and

0 0O | o [
0 O] 1 -9 0

Hs=10 11 1 00
I =9 | 0 -1 2
R B

CSincem = 2and (—1)° = +1, we need det H, > 0 and det Hs = 0 1o verify
‘ positive definiteness. Since n = 4and (— 1) = +1, we need det/{, > 0 and
- detHs < Otoverify negative definiteness. In fact, detH,, = 24anddet/fs = 77

so Q is positive definite on the constraint set, and x = 0 is a min of Q restricted
 to the constraint set.

Remark If the test for constrained definiteness of Theorem 16.4 fails only be-
cause one or more of the last n — m leading principal minors is zero, then we
would like a test for semidefiniteness, analogous to the statement of Theorem 16.2
for the unconstrained problem. Unfortunately, tests tor constrained semidefinite-
ness are much more tedious to state than the criteria described in Theorem 162,
Fortunately, such tests are rarely required in applications.

One Constraint

Constrained maximization problems with just one effective constraint arec common
in economic theory. For the problem of checking the definiteness of a quadratic
Q subject to a single constraint Ay vy +... + A,x, = 0, Theorem 16.4 states that
one needs to check the fast 1 — 1 leading principal minors of

0 Ay A,

Ay a0 ayy,

[ln'?! - . . . . . (”))

Ay dy T day
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The only omitted leading principal submatrices are:

Hy = (0) and I, = ( 0 Ay )

Ay ay
Let’s suppose that A} # (. (One of the A;’s must be nonzero.) Then, detH> =
—A7 < 0.Since m = T and (- 1) = —1, the criterion for constrained positive
definiteness is that the last 7 — I leading principal minors of (16) are negative.
Since det Hy << 0, this criterion is equivalent to the statement that the last # lead-
ing principal minors have the same sign. The criterion for constrained negative
definiteness is that det H,, . have the sign of (= 1)" and that det Hs, ..., detH, . |
alternate in sign. This means, in this case, that det Hy must be positive. It follows
that the condition for constrained negative definiteness is equivalent to the condi-
tion that the last n leading principal minors of H, . | alternate in sign. The following
theorem summarizes this discussion for m = 1 and vields an casicr-to-remember
approach for the problem of determining definiteness when there is only one linear
constraint.

Theorem 16.5 To determine the definiteness of a quadratic Qlxy, ... x)
subject to one linear constraint, form the usual (n + 1) X (n + 1) bordered
matrix H, as in (16). Suppose that Ay # 0. If the last 1 lcading principal minors
of H, .| have the same sign, Q is positive definite on the constraint set (and
X = 0is a constrained min of Q). If the last 1 leading principal minors of H,, . |
alternate in sign, () is negative definite on the constraint set (and x = 0 is a
constrained max of Q).

Other Approaches

For the sake of completeness, we mention two alternative approaches to the
problem of determining the definiteness of a quadratic form of n variables subject
to m linear cquations. The statement of Theorem 16.4 focuses on the sign of the
largest submatrix H,, ., as the cornerstone of the algorithm. Some presentations
tocus instead on the smallest of the last # — m leading principal submatrices:
Ho,yp oy the (2m + Dth order leading principal submatrix. Theorem 16.4 implies
the following alternative checks:

(A) To verity positive definiteness, check that det Hs,, . | has the same sign as
(— 1) and that all the larger leading principal minors have this sign too.

(B) To verify negative definiteness, check that detHs,, ., has the sign of
(—1)"" " and that the leading principal minors of larger order alternate in
sign.

Some texts prefer to construct the bordered matrix H by bordering the matrix
A of the quadratic form Q(x) = x"Ax below and to the right by the matrix B for
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the linear equations Bx = 0:

(A BT
Hm+11“(B 0)

In this situation, one must still check n — m principal minors. However, the
corresponding principal submatrices are no longer leading ones, but “border-
preserving” ones. One removes from H,,+,, one at a time, the n —m — 1 rows and
columns which contain the last n — m — 1 rows and columns of the matrix A, that
is, rows and columns n,n — 1,...,m + 2 0f Hypsp.

Example 16.8 To use this approach for the problem in Example 16.7, form the
bordered matrix

1 0 =1 | 0 1
0 -1 2 0] 1 -9
. O 2 1 o 1 0
H=1_-1 o o 1| 1 1
0o 1 1 110 0
I =9 0 1] 0 0

and then form the submatrix /s by removing row 4 and column 4 from H, the
row and column just before the border of H:

L0 01 0 1
0o -1 211 -9
=10 2 111 0

0 1 1|1 0 0
1 -9 01 0 0

Note that det 4 = 24 and det s = 77, just as we found for the corresponding
minors in Example 16.7.

EXERCISES

16.6 Determine the definiteness of the following constrained quadratics:

a) Qxy, x3) = x3 + 2xx; — x3, subject to x; + x; = 0.

by Q(xy, x2) = 4x} + 2x1x; — x3, subject to x; + x; = 0.

¢) Qxy, X3 x3) = x7 + x3 — x3 + 4xx3 — 2xpxy, subject to x; +.xy + x3 = O and
x; +x —xy =0,

d) Q(xy, %3, x3) = X} + x3 + x§ + 4xpx3 — 2x,0, subject to xy + x; + ;3 = O and
Xy +xo — x5 = 0.

e) Ox;, x3, x3) = x;” = x% + dx,x; — 6x2x3, subject to x; + vy — xy = ()
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16.7 Prove that statements A and B above are equivalent to the statement of Theorem
16.4.

16.8 Use the theory of determinants to show why the corresponding minors in Examples
16.7 and 16.8 have the same values.

16.9  Use the techniques of Theorem 16.3 to verify Theorem 16.4 for the general problem
with: @) three variables and one constraint, b} three variables and two constraints.

16.4 APPENDIX

This section presents the proof of Theorem 16.1. This proof has two major ingredi-
ents: the principle of induction and the theory of partitioned matrices as developed
in Section 8.7. We will prove Theorem 16.1 for positive definite matrices and leave
the proof for negative definite matrices as an exercise. First, we need two simple
lemmas.

Lemma 16.1 If A is a positive or negative definite matrix, then A is nonsingular,

Proof  Suppose that such an A is singular. Then, there exists a nonzero vector x
' such that Ax = 0. But then,

} X' ax=x"0=0,

" a contradiction to the definiteness of A. W
Lemma 16.2 Suppose that A is a symmetric matrix and that Q is a nonsingular
matrix. Then, Q" AQ is a symmetric matrix, and A is positive (negative) definite if
and only if QT AQ is positive (negative) definite.

Proof To see that QT AQ is symmetric, one checks directly that it equals its own
transpose:

(QTAQ)" = Q"AT(@") = Q'ATQ = Q"AQ.

Suppose that QTAQ is positive definite. Let x # 0 be an arbitrary nonzero
vector in R". Since ( is nonsingular, there exists a nonzero vector y such that
x = (Jy. Then

Av = N VP, TR PN o .
x'Ax = (0y)" A(Qy) = y' 0" AQy = y'(Q"AQ)y,
~which is positive, since QTAQ is positive definite. Therefore, A is positive
definite.

On the other hand, if A is positive definite and z is an arbitrary nonzero
vector, then Oz will be nonzero too, since Q is nonsingular, Therefore,

0 < Q) A(Qz) = 27 Q"AQz = 2" (QTAQ)z,

" and QT AQ is positive definite. ™
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Theorem 16.1 Let A be a symmetric matrix. Then, A is positive definite if
and only if all its leading principal minors are positive.

Proof We will prove this result by using induction on the size n of A. The result
| is trivially true for 1 X 1 matrices. We proved it for 2 X 2 matrices in Section
16.2. We suppose that the theorem is true for n X n matrices and prove it true
for (n + 1) X (n + 1) matrices.

Let A be an (n + 1) X (n + 1) symmetric matrix. Write A; for the j X j
leading principal submatrix of A for j = 1,..., n + 1.

We first prove that if all the A;’s have positive determinants, then A is
positive definite. The leading principal submatrices of A, are Ay, ..., Ay, which
are positive definite by hypothesis, since they are the first n leading principal
submatrices of A. By the inductive hypothesis that the theorem is true forn X n
matrices, the n X n symmetric matrix A, is positive definite. By Lemma 16.1
above, A, is invertible. Partition A as

\ (A,, | a ) -
A=]— , (17)
af § an+],n+1

where a denotes the n X 1 column matrix

din+1

Ay p+t

Letd = dysinr1 — a (A,) 'a, let I, denote the n X n identity matrix, and let
0, denote the n X 1 column matrix of all Us. Then, the matrix A in (17) can be
written as

A*— [n ‘ Qrz A?z l Gn In ! A;Ia
' ((A;la)’” | 1)(0;{ | d)(ﬁi o1 ) (18)

= Q'BQ.

(Exercise.) By properties of the determinant,

detQ = detQ” =1 and detB = d - detA,.
Therefore, detA = d - detA,,. (19)

Since detA > 0 and detA, > 0, thend > 0.
< Let X be an arbitrary (n + 1)-vector. Write X as

()
Xn+1
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where x is an n-vector. Then,

A, 0, ,
XTBX::(XT xrt*#l)('_f“—"“‘_““)( X )
0 ! d Xn+1 (20) :

4]

ll

y 2
fo,,x +dx, ..

Since A, is positive definite by inductive hypothesis and d > 0, this last
expression is strictly positive. Therefore, B = Q7AQ is positive definite. By
- Lemma 16.2, A is positive definite.

To prove the converse —A positive definite implies that all the |A|’s are
positive — we use induction once more. We have seen that this result is true for
1 X 1 and 2 X 2 matrices. Assume that it is true for n X n symmetric matrices,
and let A be an (n + 1) X (n + 1) positive definite symmetric matrix. We first
show that all the A;’s are positive definite. Let x; be a nonzero j-vector, and let
0" be the zero (n + 1) — j vector. Then

0<(#‘03A($):;&gﬁ

and A; is positive definite.

In particular, since A, is positive definite, the inductive hypothesis tells us
that Ay,..., A, all have positive determinants. We need only prove that the
determinant of A itself is positive. Since A, is invertible, we can once again
write A as Q" BQ as in (18) and conclude that (19) still holds. Since A is positive
definite, B is positive definite by Lemma 16.2. Choose X in (20) so that x = 0
and x,..; = 1. Then,

0< X'BX =d.

Since detA, > Oandd > 0,detA > 0. ®

EXERCISES

16.10  Show that the block decomposition (18) is correct.
16.11  Prove the corresponding theorem for negative definite matrices.




