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Lloyd Shapley is considered one of the pioneers of game theory. His most
prominent contributions are the inception and study of value theory and core
theory. These two theories are the key to solving problems involving the
allocation of goods or payoffs achievable through cooperation. Shapley’s
contributions have led to a broad range of important achievements, such as
the exploration of stable solutions for matching and exchange, the
measurement of power and a deeper understanding of market economies.
His contributions to non-cooperative game theory include the introduction
of stochastic games, strategic market games and potential games. Shapley
shared with Alvin E. Roth the 2012 Nobel Prize in Economic Sciences.

Lloyd S. Shapley, Professor Emeritus at University of California at Los
Angeles (UCLA), was born in 1923 in Cambridge, Massachusetts. He is the
son of the renowned astronomer Harlow Shapley. During the Second World
War, Shapley served with the US Army Air Corps, and in 1944, he received a
Bronze Star for breaking the Japanese and Soviet weather codes. It is said
that, after contesting a point John von Neumann made about modelling
aerial dogfights, Shapley made such an impression that he was promptly
offered a doctoral fellowship at Princeton University (as documented in
Leonard (2010)). He completed his PhD in mathematics at Princeton in 1953
under the supervision of Albert Tucker (who, in previous years, also advised
John Nash and David Gale). After graduating, Shapley became a research
mathematician at the RAND Corporation in Santa Monica, California,
from 1954 to 1981. Since 1981 he has been a professor at UCLA, affiliated
with both the economics and the mathematics departments.

Shapley is one of the most legendary figures in game theory, making
fundamental contributions to the theory of both cooperative and
non-cooperative games. Being more a mathematician than an economist,
Shapley felt the pull towards more abstract representations of interactive



decision problems, creating work that was deep and elegant to purists, but
not immediately accessible to many economists. Part of the legend
surrounding his work is also due to the fact that many important ideas are
to be found in non-traditional publication outlets and unpublished manu-
scripts.

His voluminous contributions to game theory (and, by extension,
microeconomics) are not easy to organise. One logical way to proceed is
first to summarise his key developments in the area of cooperative games;
then discuss contributions to non-cooperative theory; and finally touch on
more fundamental explorations of concepts in individual and multi-person
utility.

Cooperative game theory

Most of Shapley’s early work was on cooperative game theory. The
cooperative approach studies games from an abstract point of view, focusing
on the feasible outcomes that can be achieved through cooperation. One
looks at the payoffs that can be achieved, rather than the processes that lead
to these payoffs. Cooperative game theory deals with questions of how
coalitions can form, what coalitions will form and how coalitions that do
form divide what they achieve. The theory is key to solving problems of fair
and/or stable allocation, but also for guiding the design of solutions that are
equitable, defection-proof, and efficient. In the following, some formal
concepts will be defined – these will help in understanding Shapley’s key
contributions to cooperative game theory.

A non-transferable utility (NTU) game in coalitional form consists of a set
of players and a payoff possibility set for each subset of players. Such a game
becomes a bargaining problem when only the grand coalition (the set of all
players) can possibly generate payoff allocations above some exogenously
given status quo. Another special case is when utility is transferable, e.g.
utility is linear in money and side payments are allowed. The corresponding
TU (transferable utility) game is effectively represented by 2n values, v(S),
SDN. Here, v(S) is called the worth of coalition S, interpreted as the
maximum value that players of coalition S can jointly achieve by acting in
concert. A point solution for a TU coalitional game (N, v) consists of a
vector j ¼ ðj1;j2;y;jnÞ allocating payoff level ji to player i such thatPn

i¼1 ji ¼ vðNÞ.

Value theory

Shapley’s earliest work deals with solutions to TU games and considers the
question: what would be an a priori valuation of the expected payoff, or the
strength, of a player in a coalitional game? The answer to this question is
known as the Shapley value. Shapley (1953a) employed an axiomatic
approach to derive this solution concept. His four axioms are natural and
self-evident: (1) dummy property (if a player’s contribution to any coalition,
v S, ið Þ � v Snið Þ, is zero, then his value is equal to the worth achievable by
himself), (2) symmetry (the value does not depend on how players are
labelled), (3) efficiency (the sum of values over all players is equal to the total
worth attainable by the grand coalition) and (4) linearity (the value of the
sum of two games is equal to the sum of the values of each game). Shapley’s
remarkable result shows that if a solution has the above set of reasonable
properties, then it necessarily takes a specific value, i.e. the Shapley value.
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The Shapley value always exists and is unique. It is calculated by taking
the expected marginal contribution of each player to a random coalition
formed by having the player join in a uniformly distributed random order.
Formally, the Shapley value of player i is given by

f�i vð Þ ¼
X

SDNni

s! n� s� 1ð Þ!
n!

v S, ið Þ � v Sð Þ½ �;

where s and n denote the sizes of coalition S and the grand coalition,
respectively.

By tweaking the axioms or considering different setups the Shapley
value can be reformulated and generalised. For example, the linearity
and dummy axioms can be dropped and replaced by the marginality
principle: the value must depend only on the marginal contributions of
a player, v S, ið Þ � v Snið Þ, SDN (Young, 1985). The Shapley value can
also be characterised by symmetry and consistency: if some players are
given their Shapley value and dismissed from the game, then what the rest
of the players receive in the reduced game does not change (Hart and
Mas-Colell, 1989).

The Shapley value has been applied to a wide range of distribution
problems: e.g. the structure of multilateral treaties (Bahn et al., 2009),
taxation (Aumann and Kurz, 1977), water resource management (Lejano
and Davos, 1999), landing fees in airports (Littlechild and Thompson, 1977),
fair connection costs in communication and on network games (Bergantiños
and Vidal-Puga, 2007; Jackson, 2008), and bandwidth allocation (Niyato
and Hossain, 2006).

To illustrate one such application, consider apportioning the costs of a
new airport runway. To simplify the example, assume that three airlines,
each operating a different type of aircraft, agree to pool resources in building
a new runway. Airline A’s planes are the smallest of the three, airline B’s
planes are the next smallest, and airline C’s the largest. Clearly, the largest
plane determines the size of the runway, so simply dividing the cost of the
runway equally is unfair to airlines A and B. However, it would also be
unfair for airline C to bear the entire cost, since airlines A and B use the
runway too.

The Shapley value takes into account how much each individual or
coalition would obtain if it were to act separately and provides a reasonable
solution. For this example, assume the costs of each airline building its own
runway are as follows: c(A)=6, c(B)=8, c(C)=11. Clearly, if airline B
were to build a runway, then it could serve airline A as well, so c(AB)=8.
And if airline C were to build the runway, then it would serve the other two
airlines, so c(AC)=11, c(BC)=11 and c(ABC)=11. The Shapley value for
this example turns out to be

j cð Þ ¼ 2; 3; 6ð Þ:

This apportioning can be interpreted in a surprisingly commonsensical
way – i.e. simply dividing the cost of each segment of the runway equally
among the airlines that are able to use that runway segment. The costs of the
first, second and third segments are 6, 2 and 3, respectively. Thus, airline A
pays for 1/3 of the first segment; airline B pays for 1/3 of the first segment
and for 1/2 of the second segment; and airline C pays for 1/3 of the first
segment, for 1/2 of the second segment and for the entirety of the third
segment.
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Sometimes there are no mechanisms, such as fund transfers, that allow the
free transfer of utility across players. One natural question is how to
generalise the Shapley value to such situations. The literature offers several
approaches (e.g. Harsanyi, 1963; Maschler and Owen, 1989). Shapley (1969)
himself offered an elegant extension. His l-transfer method converts a NTU
coalitional game into a l-transferable game. Given a vector l40 of utility
weights, we can provisionally assume that utilities are transferable at rate
li=lj between players i and j, and calculate the Shapley of such a l-
transferable game. To complete, one looks for a vector l40 such that the
Shapley value of the l-transferable game involves no transfers (as required
by NTU). The method of l-transfers appears to justify why one should
consider solutions for TU games first (Myerson, 1992).

Aumann and Shapley engaged in the challenging problem of extending
value theory to the case of a continuum of players. Their work culminated in
their 1974 book Values of Non-Atomic Games. One remarkable discovery is the
‘diagonal principle’, by which only the coalitions whose composition
constitutes a good sample of the grand coalition matter (e.g. if the population
contains 10% of ‘engineer types’ and 15% of ‘physician types’, only coalitions
containing 10% or engineers and 15% of physicians would matter).

Value theory can be used to measure power in political systems. As early
as 1954, Shapley introduced simple games, wherein coalitions have a value of
zero or one. A natural interpretation is that of a voting body that requires a
minimum number of votes to pass a certain piece of legislation. How much
power does a given individual possess? The Shapley–Shubik power index
(defined as the Shapley value of the simple game) and the Banzhaf power
index, are two possible and related answers (Shapley and Shubik, 1954;
Dubey and Shapley, 1979). Power theory has been instrumental in explaining
precisely why some actors (such as ‘swing votes’ in the Supreme Court) wield
the power that they do.

In summary, Shapley’s (1953a) seminal work has been enormously
influential, both through the widespread use of the Shapley value as well
as by inspiring other values obtained through modifications to Shapley’s
original axioms.

Core theory

In addition to notions of strength or fairness, one can consider notions of
social stability. Intuitively, a social group is stable if no subgroup can do
better on its own by challenging the social order (e.g. separating from the
society or taking control over the current order). If the possibilities of each
coalition are described by a coalitional game, then the core of such a game is
the set of feasible outcomes that cannot be improved upon by any coalition
of players. Core allocations are individually rational (no individual acting
alone can do better), Pareto efficient (the group of all players acting together
cannot do better for all its members) and socially stable (no coalition of
players acting on their own means can do better for all its members). The
core, in contrast to the value, may be multi-valued or empty. The latter case
indicates a natural instability in the game. The core is a powerful concept for
analysing allocations (of goods or money) that would or should result from
even large numbers of players acting rationally in market or non-market
situations. For example, we should not expect a reasonably free, well-
functioning and competitive market to produce outcomes that lie outside the
core.
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This notion of coalitional stability was discussed by Francis Edgeworth, a
key figure in the evolution of neoclassical economics, in his 1881
Mathematical Psychics. Gillies, in his 1953 dissertation, was the first to
formally define the core to examine properties of other solution concepts in
TU games (see Gillies, 1969). Shapley, in lectures at Princeton in the fall of
1953, was the first to introduce the core as an independent solution concept
for coalitional games.

Over the next two decades, Shapley made fundamental contributions to
core theory. The notion of the core allows the study of exchange without
involving money or price. Shapley and Scarf (1974) considered an economy
with n households, each endowed with one unit of an indivisible object (e.g. a
house), and willing to engage in favourable exchanges of one object for
another. Households are endowed with ordinal preferences – rankings – over
objects. Shapley and Scarf examined the ‘top-trading’ algorithm proposed by
Gale. The idea of the algorithm is as follows. Imagine that traders are nodes
in a directed graph. They form edges by each pointing at the owner whose
object they most desire (they may be pointing to themselves). If a cycle forms,
then each household in a cycle is asked to relinquish his object and take the
more desired one. This procedure is repeated with the remaining traders. The
process ends after a finite number of steps with an assignment of objects to
households. They showed that the resulting allocation could be supported in
a competitive equilibrium by a set of prices and hence, by Shapley’s theorem,
it is in the core (this last result is published by Debreu and Scarf, but credited
to Shapley).

Shapley and Shubik (1971) considered a two-sided market in which a
product that comes in large, indivisible units (e.g. houses or cars) is
exchanged for money, and in which each participant either supplies or
demands exactly one unit. They showed that the outcomes in the core of the
corresponding TU game are the solutions of a certain linear programming
problem dual to the optimal assignment problem. Moreover, these outcomes
correspond exactly to the price lists that competitively balance supply and
demand.

It is important to ascertain non-emptiness of the core because, whether in
real or hypothetical situations (e.g. countries negotiating a treaty over
climate change mitigation), an empty core can be expected to lead to
stalemate, treaty violations or protracted conflict. Shapley (1967) showed
that the core of a game is non-empty if and only if the game is balanced, a
result independently established by Bondareva in 1963. For the NTU case,
Shapley (1973) offered an alternative proof of Scarf’s theorem that a
balanced game always has a non-empty core. His proof involves an elegant
extension of the Knaster–Kuratowski–Mazurkiewicz (KKM) Theorem,
currently known as the KKMS Theorem. Shapley (1971) introduced convex
games, i.e. TU games in which the worth of a coalition increases rapidly with
its size. These games always possess non-empty cores and the centre of gravity
of the extreme points of the core is the Shapley value.

Shapley and Shubik (1969) studied the possibility of representing
coalitional games by markets. They show that a TU game is representable
by a market if and only if the game is totally balanced (games whose
subgames possess non-empty cores). The markets they considered were pure
exchange economies with money. Later, Billera (1974) established a
version of this result for markets with production but without money.
Shapley and Shubik (1975) proved that for any TU market game, the direct
market represents the game and that its competitive payoff vectors
completely fill up the core. Furthermore, given any point in the core, there
exists a representing market that has the given core point as its unique
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competitive payoff vector. Shapley and Shubik conjectured that the same
result holds with respect to the inner core for NTU games, a claim later
verified by Qin (1993).

Matching

A cooperative game has 2 to the power of n coalitions and, hence, it is
difficult to check if the core is non-empty. The situation is simplified if
individual improvements can be possibly made only by forming pairs. For
any given allocation, one only needs to check that no pair of two players can
do better separately. For example, consider a roommate problem in which
four players, A, B, C and D, need to create two pairs in order to share two
rooms. The preferences of individuals with respect to whom they would like
to share a room are:

A: B4C4D,
B: C4A4D,
C: A4B4D, and
D: any preference.

Let us begin with the matching (AB, CD). This matching is not stable
because both B and C can be better off forming a pair than staying with their
current partners. But the new matching, (BC, AD), is not stable because A
and C are better off forming a pair than staying with their current partners.
However, (AC, BD) is unstable because A and B have incentives to form a
pair, thus returning to (AB, CD). Because these are the only three possible
arrangements, this matching problem does not possess a stable solution.

Gale and Shapley (1962) considered the stability of two-sided matching.
There are two types of players and value is created only when pairs have
one individual from each type. A situation that naturally comes to mind is a
set of boys and girls who need to be matched to form heterosexual couples.
The essential data is nothing more than a double list of ordinal rankings,
where each player ranks the members of the opposite sex in order of their
desirability to him or her. Gale posed the question: does a stable
arrangement exist for the two-sided matching problem? Shapley settled the
question in the positive by discovering the now famous deferred-acceptance
algorithm.

The deferred-acceptance algorithm works as follows. Let each boy make a
matching proposal to his most preferred girl. Each girl who receives more
than one proposal rejects all the boys except for the one she prefers the most.
Importantly, each girl does not yet accept the proposal that she holds on to,
but waits until the end of the algorithm (deferred-acceptance). In the second
round, each of the rejected boys makes a proposal to their second-ranked
girl. Again, each girl receiving new proposals rejects all but the one she
prefers the most, and so on. The algorithm ends when no girl rejects any
proposal, at which point all proposals are accepted and a matching is
completed. This happens after a finite number of steps, since no boy makes a
proposal twice to the same girl. The matching is stable because no boy can
switch to a more preferred girl who would accept him (he has been rejected
by all the girls who rank ahead of the one he gets matched to).

By the properties of the algorithm, a stable matching exists and it is
reached in a finite number of steps. Moreover, it is optimal and strategy-
proof for the side that proposes (Gale and Shapley, 1962; Roth and
Sotomayor, 1992). In the concluding remarks of the 1962 paper, the authors
revel in the fact that ‘The argument is carried out not in mathematical
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symbols but in ordinary English; there are no obscure or technical terms’.
They also predicted that the algorithm would eventually be applied in
practice.

The matching solution applies to many real-world economic situations
where goods are lumpy or indivisible and when there are no price or market
mechanisms available to assign goods. Shapley’s work on matching markets
in the early 1960s with non-transferable utility and in the early 1970s with
transferable utility led to an enormous volume of work by many others, most
notably Alvin E. Roth, on a large variety of matching markets: assigning
residents to hospitals, pairing kidney donors and transplant patients,
assigning teenagers to public high schools, and many others. Roth and
Shapley shared the 2012 Nobel Prize for the theory of stable allocations and
the practice of market design.

Noncooperative game theory

Strategic equilibrium

In addition to value theory and core theory, Shapley is also an important
figure in non-cooperative game theory. John Nash, whose equilibrium
concept offers a fundamental solution for non-cooperative games, and
Shapley were close associates in Princeton. Anecdotally, Nash originally had
thought of calling his solution a stable point, but Shapley convinced him to
go with ‘equilibrium’ instead (i.e. Nash equilibria can often be unstable, like
a marble on top of a mountain peak) (as recounted by Shapley to one of the
authors).

Shapley (1953b) introduced stochastic games to model the dynamics of
ongoing non-cooperative game situations in which the game changes over
time as a function of the players’ strategic choices and the state of nature.
Shapley (1953b) characterised the minimax value of zero-sum stochastic
games and showed that the equilibrium can be supported by strategies that
depend only on the state.

Aumann and Shapley (1976) were the first to produce a version of the
‘folk’ theorem, a central result in the theory of repeated games. Their
theorem states that every feasible and individually rational payoff in a game
can be supported by a subgame perfect equilibrium of the undiscounted
infinitely repeated game. Later versions of the theorem employ discounted
payoffs. These theoretical contributions to stochastic games and repeated
games are now recognised as the key to understanding how bargaining in real
economic situations occur. The theory has also proven valuable in other
areas such as evolutionary biology and artificial intelligence.

Fundamental to the general (Walrasian) model of market exchange is the
requirement that transactions be governed by a uniform price system. That
is, the law of one price is imposed in the general equilibrium model.
However, prices in the general equilibrium model are given ex machina and
are not responsive to agents’ buying and selling decisions. Agents are passive
with respect to prices at which they trade. A theory is therefore needed to
account for how prices get formed. Shapley and Shubik (1977a) offered a
model, a.k.a. the trading post model, that is strategically closed, in that prices
are determined by decisions of agents and the system as whole responds
meaningfully to agents’ decisions. A good summary of the trading posts
model can be found in Mas-Colell Whinston and Green (1995, Example
18.C.3). The trading post model has applications in a wide range of areas,
including contemporary monetary macroeconomics with endogenous
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demand for money (see, for example, the special issue on strategic market
games in the Journal of Mathematical Economics, vol. 39, issue 5–6 of 2003).

Utility theory

Finally, Shapley made important contributions to utility theory. He provided
foundations of cardinal utility based on intensity of preferences. Shapley
developed expected utility theory without the completeness axiom, which
was later used as foundation for multi-person utility (Baucells and Shapley,
2008).

In his class notes at UCLA, Shapley emphasised the fact that each solution
concept has attached to it a utility category. Specifically, if we arrange
the utilities of the players in a vector, every solution concept is invariant to
a certain family of transformations of this utility vector. The largest group
of transformations defines the utility category of the solution concept
(Moulin, 1991). For example, mixed strategy equilibrium is invariant to
affine transformations of each individual utility. Hence it is a cardinal
solution concept.

The challenge is either to discover a solution concept belonging to a larger
utility category, or to provide an impossibility result. Shapley did both. For
two-player bargaining situations, Shapley (1969) showed that no ordinal
solution concept exists (recall that Nash bargaining solution allows only the
linear scaling of individual utilities). For three-player bargaining situations,
Shapley was able to define a solution concept that exits, is unique, and is
invariant to order-preserving transformations. The solution, which Shapley
never formally published, is informally known as ‘Quaker oats’ (see Shubik,
1982, section 4.3.3).

Shapley named this bargaining solution after the Quaker oats container
that shows a Quaker holding a Quaker oats container that shows a Quaker
holding a Quaker oats container, etc. Consider a Pareto surface and the
‘triangle’ formed by its intersection with the disagreement planes. We define
a second ‘triangle’ as the largest possible triangle inside the first triangle such
that each edge follows the indifference curve of one of the three players. This
procedure can be repeated ad infinitum, and converges to a unique point in
the Pareto surface. As with Walrasian equilibrium, the procedure is entirely
based on indifference curves, and hence belongs to the ordinal class. It was
not until the 2000s that ordinal solutions in the presence of four or more
players were found (Samet and Safra, 2005). They are all based on Shapley’s
Quaker oats solution.

Concluding remarks

Some of Shapley’s important work did not come to light in the usual way.
Defying traditional academic convention, much of his writings took the form
of RAND reports, book chapters, notes for his classes at UCLA and
unpublished material. His doctoral students (authors of this entry included)
can attest to a bag of papers that Shapley would often carry, containing gems
of ideas, many unpublished. Some of his unpublished contributions have
been acknowledged or published by others who needed to build on these
results (Shubik, 1982). For instance, Aumann (1962) credited Shapley for the
independent formulation of expected utility without the completeness axiom.
Debreu and Scarf (1963) credited Shapley for the proof that the Walrasian
equilibrium produces outcomes in the core. And the Shapley–Folkman
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theorem, an important result in convex geometry, appears as an appendix in
Starr (1969).

Two themes repeat in Shapley’s work: constructive algorithmic proofs and
clever counterexamples. We have already discussed the ‘deferred-acceptance’
algorithm in matching. Shapley (1974) provided an alternative, constructive
proof of the existence of Nash equilibrium in two-person non-cooperative
games applying the path-following Lemke–Howson algorithm. Each
equilibrium point has an orientation: there is always one more ‘negative’
than ‘positive’ equilibrium point. While not all equilibria are accessible,
Shapley (1981) examined how to transform problems so that previously
inaccessible solutions become accessible by means of path-following
algorithms. Monderer and Shapley (1996) introduced potential games and
showed that these games have a pure-strategy equilibrium by following a
finite improvement path. Shapley was awarded the Informs John von
Neumann Theory Prize in 1981 for his contributions to operations research.

Shapley is also famous for providing counterexamples. Shapley and
Shubik (1977b) constructed an economy with quasi-linear utilities and three
equilibria, showing that the conditions for uniqueness of equilibrium cannot
be relaxed much. For a while it was an open question whether fictitious
play converges to equilibrium. In fictitious play, two automatons play a
repeated game by choosing the best response to the frequency of play
employed by the opponent during the previous rounds. Shapley (1964)
constructed a ‘rock–scissors–paper’-like game in which fictitious play cycles
over the three strategies. Moreover, the frequency of the cycles increases with
the number of plays, hence failing to converge to the mixed strategy
equilibrium. Another instance is a 21-player counterexample he constructed,
with Kikuta (1986), to resolve a longstanding question in cooperative game
theory.

Shapley is well known as an engaging wit and a rare intellect. On the
association of his name with the value, he said: ‘I seem to be turning into an
adjective. I would still like to be a noun’ (http://articles.economictimes.
indiatimes.com/2003-01-17/news/27560412_1_game-theory-john-f-nash-har-
vard). His far-ranging work, which has left its imprint on almost every aspect
of game theory, is perhaps summed up best by Robert Aumann who wrote:

‘Shapley’s work in Game Theory – both applied and mathematical – is truly
astounding in scope, in depth, in beauty, and in importance. On each of these
counts, Shapley has done more than all the previous Game Theory Nobelists,
even when taken together.’ (http://www.econ.ucla.edu/news/shapley/)

Manel Baucells, Raul Lejano and Cheng-Zhong Qin
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