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• We consider two-player single-valued Nash bargaining solutions with non-convexity.
• These solutions are dictatorial selections of Nash product maximizers.
• They are implementable as unique SPE payoff allocations of a sequential game.
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a b s t r a c t

Nash solutions for two-player bargaining problems with non-convexity are shown to be dictatorial
selections of Nash product maximizers in recent literature. In this paper we show that these solutions
are implementable as unique subgame perfect equilibrium payoff allocations of a sequential game.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

We consider a class of two-player economic bargaining en-
vironments that naturally result in non-convex bargaining prob-
lems. By results in Naumova and Yanovskaya (2001) and Peters
and Vermeulen (2012), solutions under the Nash axioms on this
class are each dictatorial selections of Nash product maximizers.
We show that each of these Nash solutions is implemented as
the unique subgame perfect equilibrium payoff allocation of a
sequential game based on our bargaining environment.

The sequential game has a nomination phase and a trial phase.
The basic building block of the trial phase is the two-period
version of Ståhl’s (1972) alternating offer game. In the trial phase,
the players sequentially bid in terms of delay time for being
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the first to make an offer.1 In the nomination phase, the play-
ers simultaneously nominate candidate alternatives. Each player
can only nominate one feasible alternative, and only the status
quo and the nominated candidate choices are the alternatives
on the table in the subsequent trial phase. We show that the
resulting nomination-trial game implements the Nash solution in
favor of the player who submits bid first in the trial phase, with
the relative bargaining powers reflecting the players’ relative
patience.

2. Preliminaries

2.1. Bargaining environment

Two players, 1 and 2, are endowed with a compact set X (in
a topological space) of alternatives that they can jointly achieve

1 If the two players submit bid simultaneously, this trial phase can be
regarded as a variant of the game in Moulin (1984) that implements the Kalai–
Smorodinsky (1975) solution with convexity. The latter game cannot implement
a single-valued solution in the presence of non-convexity, unless sequential
bidding is considered.
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with agreement and a status quo q ∈ X , which the players will
end up getting in case of disagreement. No randomization device
is feasible for the players. However, delays are possible and time
is continuous. A feasible bargaining outcome is a pair ⟨x, t⟩ with
x ∈ X and t ∈ [0, ∞], which is understood as an agreement
for choosing alternative x being reached after a delay of time
t . The preferences of player i ∈ {1, 2} over outcomes ⟨x, t⟩ are
represented by the utility function

e−ritUi(x) + (1 − e−rit )Ui(q),

where ri > 0 and Ui : X → R are respectively the instantaneous
discount rate and utility function of player i. Set r = (r1, r2) and
U(·) = (U1(·),U2(·)). We assume that U is continuous and U(x) ≫

U(q) for some x ∈ X . We refer to each quadruple (X, q, r,U)

satisfying the above assumptions as a bargaining environment.

2.2. Nash bargaining solutions

Following the axiomatic approach initiated by Nash (1950), a
(two-player) bargaining problem is composed of a set S ⊆ R2

of feasible payoff allocations and a disagreement point d ∈ S.
A bargaining problem (S, d) is regular if S is compact and there
exists u ∈ S such that u ≫ d; it is r-star-shaped (relative to the
disagreement point) if2

u ∈ S and t ∈ [0, ∞] ⇒
(
e−ritui +

(
1 − e−rit

)
di

)
i∈{1,2} ∈ S.

A bargaining solution on a domain B of bargaining problems is a
mapping f : B → R2 such that f (S, d) = (f1(S, d), f2(S, d)) ∈ S for
all (S, d) ∈ B.

Given a bargaining environment (X, q, r,U), the set of feasible
payoff allocations is

S =

{(
e−ritUi(x) +

(
1 − e−rit

)
di

)
i∈{1,2} : x ∈ X and t ∈ [0, ∞]

}
(1)

and the disagreement point is

d = U(q). (2)

Note that a bargaining problem (S, d) generated by any bargaining
environment with discount rates r is regular and r-star-shaped.
Conversely, any regular and r-star-shaped problem can be derived
from some bargaining environment with discount rates r. Let
Br denote the family of all regular and r-star-shaped bargaining
problems. Note that the problems in Br need not be convex so
that there can be multiple Nash product maximizers.

Definition 1. A bargaining solution f on a domain B is said to be
a (single-valued) Nash (bargaining) solution if there exist i ∈ {1, 2}
and α ∈ R2

++
with α1 + α2 = 1 such that for any (S, d) ∈ B,

{f (S, d)} = argmax
u∈Σ(S,d)

ui

where Σ(S, d) is the set of Nash product maximizers of (S, d) with
respect to bargaining powers α, i.e.,

Σ(S, d) ≡ argmax
u∈S,u≥d

(u1 − d1)α1 (u2 − d2)α2 .

The axiomatic foundation of Definition 1 is provided by Nau-
mova and Yanovskaya (2001) and Peters and Vermeulen (2012).
Their results show that a multi-valued n-player bargaining solu-
tion satisfying certain ‘‘Nash axioms’’ must iteratively maximize

2 In the special case with r1 = r2 , (S, d) being r-star-shaped means that S is
star-shaped about d, i.e., for all u ∈ S and p ∈ [0, 1], pu + (1 − p)d ∈ S.

Nash products with distinct distributions of bargaining pow-
ers. Qin et al. (2017) identify the exact representations of single-
valued Nash bargaining solutions. Namely, for a rich variety of
domains including Br for any r ∈ R++, the Nash solutions given
by Definition 1 are the only single-valued bargaining solutions
satisfying the axioms of Invariance to Positive Affine Transfor-
mations,3 Independence of Irrelevant Alternatives,4 and Strict
Individual Rationality.5

3. Implementation

Let (X, q, r,U) be a bargaining environment as introduced in
Section 2. We consider non-cooperative implementation of Nash
solutions to the associated bargaining problem. To this end, let
Γ (i, t, Y ) denote the two-period alternating offer game as in Ståhl
(1972), where i ∈ {1, 2} is the first mover, t ∈ [0, ∞] is the length
of time delay between two offers, and Y ⊆ X with q ∈ Y is the
set of alternatives on the table. Negotiation takes place according
to the following nomination-trial game.
Phase 1: The Nomination Phase

• Each player i nominates a candidate alternative xi ∈ X
simultaneously.

Phase 2: The Trial Phase

• Player 1 names a delay time t1 ∈ [0, ∞].
• After observing t1, player 2 names another delay time t2 ∈

[0, ∞] with t2 ̸= t1.
• If t1 < t2, the two players play Γ (1, t1+t2

2 , {x1, x2, q}); if
t2 < t1, they play Γ (2, t1+t2

2 , {x1, x2, q}).

We adopt pure strategy subgame perfect equilibrium (hereafter
SPE) as the equilibrium concept.

Our main result shows that the above nomination-trial game
SPE-implements the Nash solution in favor of the player who
submits bid first in the trial phase, with the relative bargaining
powers determined by the players’ relative patience.

Theorem 1. Given any bargaining environment (X, q, r,U), the
nomination-trial game has at least one SPE; the payoff allocation
in any SPE is f (S, d) where S, d are given by (1) and (2) and f
is the Nash solution given in Definition 1 with domain Br, i = 1,
α1 = r2/(r1 + r2), and α2 = r1/(r1 + r2).

Osborne and Rubinstein (1990) describe approximate imple-
mentations by various strategic models, including Rubinstein’s
(1982) alternating offer game with vanishing risk of breakdown
and time discounting (Binmore et al., 1986) and the perturbed
Nash demand game due to Nash (1953). These strategic mod-
els were primarily constructed for dealing with convex bargain-
ing problems. They do not implement single-valued bargaining
solutions when allowing for non-convexity.6

4. Proof of Theorem 1

Due to translation invariance, we normalize the disagreement
point to 0 without loss of generality. With this normalization,
each player i’s utility function becomes e−ritUi(x). We first focus
on the case of symmetric discounting.

3 It means, for any (S, d) ∈ B and for any positive affine transformation
τ : R2

→ R2 , f (τ (S), τ (d)) = τ (f (S, d)).
4 It means, for any (S, d), (T , d) ∈ B with S ⊆ T , f (T , d) ∈ S implies

f (S, d) = f (T , d).
5 It means, for any (S, d) ∈ B, f (S, d) ≫ d.
6 For stationary SPE of Rubinstein (1982) game, see Herrero (1989). With

non-stationary SPE allowed, Rubinstein’s game can even lead to non-vanishing
delay when the risk of breakdown and time discounting vanish. See Binmore
(1987).
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Lemma 1. Assume r1 = r2 ≡ r and let δ ≡ e−r
∈ (0, 1) be the

common discount factor per unit time. Let t ∈ [0, ∞] and a, b ∈

X. Then, Γ (i, t, {a, b, q}) has at least one SPE. If U(a),U(b) ≥ 0,
then (i) Γ (i, t, {a, b, q}) has ⟨a, 0⟩ as its unique SPE outcome when
Uj(a) > δtUj(b) and Ui(a) > Ui(b); (ii) Γ (i, t, {a, b, q}) has ⟨b, 0⟩ as
its unique SPE outcome when Uj(a) < δtUj(b) and Ui(b) > 0; (iii)
the set of SPE outcomes of Γ (i, t, {a, b, q}) is {⟨a, 0⟩ , ⟨b, 0⟩} when
Uj(a) = δtUj(b) and Ui(a) ≥ Ui(b).

Proof. Given t ∈ [0, ∞] and a, b ∈ X , Γ (i, t, {a, b, q}) is a
finite game of perfect information; hence, it has at least one (pure
strategy) SPE as can be shown by backward induction.

With Uj(a) > δtUj(b) and Ui(a) > Ui(b), it is optimal for
player j to accept awhenever it is offered in Γ (i, t, {a, b, q}). Thus,
since Ui(a) > Ui(b), it is optimal for player i to offer a in SPE.
This establishes (i). With Uj(a) < δtUj(b) and Ui(b) > 0, player
j always rejects any offer other than b in Γ (i, t, {a, b, q}). Thus,
since Ui(b) > 0, it is optimal for player i to offer b which will be
accepted by player j in SPE. This establishes (ii).

Now suppose Uj(a) = δtUj(b) and Ui(a) ≥ Ui(b). The following
describes a SPE in Γ (i, t, {a, b, q}) leading to outcome ⟨a, 0⟩:
player i offers a and player j accepts a and b but rejects q in the
first period; player j offers b and player i accepts any offer in the
second period regardless of what happened in the first period.
Similarly, the following describes a SPE in Γ (i, t, {a, b, q}) leading
to outcome ⟨b, 0⟩: player i offers b and player j accepts b but
rejects a and q in the first period; player j offers b and player i
accepts any offer in the second period whatever happened in the
first period. It is straightforward to show that there can be no
other (pure strategy) SPE outcome. □

Lemma 2. Theorem 1 holds when r1 = r2.

Proof. Let r = r1 = r2 and δ = e−r
∈ (0, 1). Consider the trial

phase following nominations a, b ∈ X . Without loss of generality
we assume U(a),U(b) ≥ 0. Any nominated candidate that is not
individually rational can be replaced by the status quo q. We
complete the remaining proof in five steps.

Step 1. If U(a) = U(b), then the set of SPE outcomes of the trial
phase is {⟨a, 0⟩ , ⟨b, 0⟩}, but the SPE payoff allocation is unique
and equal to U(a).

Step 2. If U1(a)U2(a) > U1(b)U2(b), the trial phase has ⟨a, 0⟩ as
the unique SPE outcome.

To see this, first note that the result holds if in addition
U1(a) > U1(b) and U2(a) > U2(b). Now suppose that Uj(a) ≤ Uj(b)
and Ui(a) > Ui(b). Then

0 ≤
Ui(b)
Ui(a)

<
Uj(a)
Uj(b)

≤ 1.

From player i’s point of view, ⟨a, 0⟩ is the unique best possible
outcome in the trial phase. Player i can guarantee outcome ⟨a, 0⟩
by specifying ti such that

0 ≤
Ui(b)
Ui(a)

< δti <
Uj(a)
Uj(b)

≤ 1.

If player j chooses tj > ti, then the two players will subse-
quently play Γ (i, t, {a, b, q}) where t = (ti + tj)/2 > ti. In this
case, δtUj(b) < Uj(a). Thus, since Ui(a) > Ui(b), Lemma 1(i)
implies that the unique SPE outcome of Γ (i, ti, {a, b, q}) is ⟨a, 0⟩.
If player j chooses tj < ti, then two players will subsequently
play Γ (j, t, {a, b, q}) where t = (ti + tj)/2 < ti. In this case,
δt > δti which in turn implies Ui(b) < δtUi(a). Since U1(a)U2(a) >

U1(b)U2(b), U(a) ≥ 0, and U(b) ≥ 0, it follows that Uj(a) >

0. Thus, by interchanging i with j and a with b, Lemma 1(ii)
implies that the unique SPE outcome of Γ (j, t, {a, b, q}) is ⟨a, 0⟩.

Therefore, any SPE outcome of the trial phase must be ⟨a, 0⟩. Also,
it is straightforward to see that the trial phase has SPE.

Step 3. If U1(a)U2(a) = U1(b)U2(b) > 0 and U1(a) > U1(b), the
trial phase has ⟨a, 0⟩ as the unique SPE outcome.

To see this, first note that the assumptions imply

0 <
U1(b)
U1(a)

=
U2(a)
U2(b)

< 1.

From player 1’s point of view, ⟨a, 0⟩ is the unique best possible
outcome in the trial phase. Player 1 can guarantee outcome ⟨a, 0⟩
by specifying t1 such that δt1 = U2(a)/U2(b). Then, depending
on player 2’s choice of t2 ∈ [0, ∞] the players play either
Γ (1, t, {a, b, q}) with t = (t1 + t2)/2 > t1 or Γ (2, t, {a, b, q})
with t = (t1 + t2)/2 < t1. In the first case, it follows from
Lemma 1(i) (with i = 1 and j = 2) that the unique SPE outcome
of Γ (1, t, {a, b, q}) is ⟨a, 0⟩. In the second case, it follows from
Lemma 1(ii) (with a, b interchanged, i = 2, and j = 1) that the
unique SPE outcome of Γ (2, t, {a, b, q}) is again ⟨a, 0⟩. Therefore,
any SPE outcome of the trial phase must be ⟨a, 0⟩. Also, it is
straightforward to see that the trial phase has SPE.

For the remaining proof, we consider the overall game. Let
u = f (S, 0) ≫ 0where f is the Nash solution given by Definition 1
with i = 1 and α = (1/2, 1/2). Pick a ∈ X such that U(a) = u.

Step 4. u is a SPE payoff allocation.
To see this, consider a strategy profile, in which each player

selects a ∈ X in the nomination phase and following each pair of
nominations, they play a SPE strategy profile in the trial phase.
By Step 1, the outcome of this strategy profile is ⟨a, 0⟩ and the
resulting payoff allocation is u. It remains to show that no one
has incentives to deviate from a in the nomination phase. Since
U(a) = f (S, 0), if a player unilaterally deviates from a to any
b ∈ X with U(b) ≥ 0, the conditions in one of the previous three
steps would be satisfied and then the SPE payoff allocation of trial
phase would still be U(a). Therefore, no player has incentives to
âĂĺdeviate.

Step 5. u is the only SPE payoff allocation.
To see this, first note that player 1’s payoff in any SPE is at

least u1 because player 1 can guarantee herself this payoff by
nominating a. Similarly, player 2’s payoff in any SPE is at least
u2. Since u = f (S, 0) is on the strict Pareto frontier of S, u must
be the only SPE payoff allocation. □

From the classical analysis of Fishburn and Rubinstein (1982),
the assumption r1 = r2 is without loss of generality because
any asymmetry in discounting can be incorporated in the in-
stantaneous utility functions. More specifically, recall that player
i’s utility function is e−ritUi(x); thus, for any r̄ > 0, player i’s
preferences can also be represented by the utility function[
e−ritUi(x)

]r̄/ri
= e−r̄ t (Ui(x))r̄/ri = e−r̄ t Ũi(x),

where

Ũi(x) ≡ (Ui(x))r̄/ri .

Hence, r̄ can be regarded as the common discount rate, if we let
Ũi be player i’s instantaneous utility function.

Proof of Theorem 1. Transform the utility functions as above. By
Lemma 2, the nomination-trial game SPE-implements the Nash
solution given in Definition 1 with i = 1 and α = (1/2, 1/2). The



C.-Z. Qin, G. Tan and A.C.L. Wong / Economics Letters 178 (2019) 46–49 49

objective function in the first-round maximization in Definition 1
is(
Ũ1(x)

)1/2 (
Ũ2(x)

)1/2
= (U1(x))r̄/2r1 (U2(x))r̄/2r2

= [(U1(x))α1 (U2(x))α2 ]r̄(r1+r2)/2r1r2 .

Maximizing
(
Ũ1(x)

)1/2 (
Ũ2(x)

)1/2
is equivalent to maximizing

(U1(x))α1 (U2(x))α2 . □
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